ZeroTimo commited on
Commit
a92112f
·
verified ·
1 Parent(s): c8c37ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -127
app.py CHANGED
@@ -1,109 +1,111 @@
 
 
1
  import os
2
  import gradio as gr
3
  import requests
4
- import inspect
5
  import pandas as pd
6
- from agent import agent_executor
7
- from langchain_core.messages import HumanMessage
 
 
8
 
9
  # (Keep Constants as is)
10
- # --- Constants ---
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
- # --- Basic Agent Definition ---
14
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
 
 
15
  class BasicAgent:
16
  def __init__(self):
17
  print("LLM Tool-Enhanced Agent initialized.")
18
 
19
- def __call__(self, question: str) -> str:
 
20
  try:
21
- result = agent_executor.invoke({"messages": [HumanMessage(content=question)]})
22
  answer = result["messages"][-1].content
23
  return answer.strip()
24
  except Exception as e:
25
  print(f"Agent error: {e}")
26
  return "I don't know."
27
-
28
- def run_and_submit_all( profile: gr.OAuthProfile | None):
29
- """
30
- Fetches all questions, runs the BasicAgent on them, submits all answers,
31
- and displays the results.
32
- """
33
- # --- Determine HF Space Runtime URL and Repo URL ---
34
- space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
35
 
36
  if profile:
37
- username= f"{profile.username}"
38
  print(f"User logged in: {username}")
39
  else:
40
  print("User not logged in.")
41
  return "Please Login to Hugging Face with the button.", None
42
 
43
- api_url = DEFAULT_API_URL
44
  questions_url = f"{api_url}/questions"
45
- submit_url = f"{api_url}/submit"
46
 
47
- # 1. Instantiate Agent ( modify this part to create your agent)
48
  try:
49
  agent = BasicAgent()
50
  except Exception as e:
51
- print(f"Error instantiating agent: {e}")
52
  return f"Error initializing agent: {e}", None
53
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
54
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
55
  print(agent_code)
56
 
57
- # 2. Fetch Questions
58
- print(f"Fetching questions from: {questions_url}")
59
  try:
60
  response = requests.get(questions_url, timeout=15)
61
  response.raise_for_status()
62
  questions_data = response.json()
63
  if not questions_data:
64
- print("Fetched questions list is empty.")
65
- return "Fetched questions list is empty or invalid format.", None
66
  print(f"Fetched {len(questions_data)} questions.")
67
- except requests.exceptions.RequestException as e:
68
- print(f"Error fetching questions: {e}")
69
- return f"Error fetching questions: {e}", None
70
- except requests.exceptions.JSONDecodeError as e:
71
- print(f"Error decoding JSON response from questions endpoint: {e}")
72
- print(f"Response text: {response.text[:500]}")
73
- return f"Error decoding server response for questions: {e}", None
74
  except Exception as e:
75
- print(f"An unexpected error occurred fetching questions: {e}")
76
- return f"An unexpected error occurred fetching questions: {e}", None
77
 
78
- # 3. Run your Agent
79
- results_log = []
80
- answers_payload = []
81
- print(f"Running agent on {len(questions_data)} questions...")
82
  for item in questions_data:
83
- task_id = item.get("task_id")
84
- question_text = item.get("question")
85
  if not task_id or question_text is None:
86
- print(f"Skipping item with missing task_id or question: {item}")
87
  continue
 
88
  try:
89
- submitted_answer = agent(question_text)
90
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
91
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
 
 
92
  except Exception as e:
93
- print(f"Error running agent on task {task_id}: {e}")
94
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
95
 
96
  if not answers_payload:
97
- print("Agent did not produce any answers to submit.")
98
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
99
 
100
- # 4. Prepare Submission
101
- submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
102
- status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
103
- print(status_update)
104
-
105
- # 5. Submit
106
- print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
107
  try:
108
  response = requests.post(submit_url, json=submission_data, timeout=60)
109
  response.raise_for_status()
@@ -112,91 +114,32 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
112
  f"Submission Successful!\n"
113
  f"User: {result_data.get('username')}\n"
114
  f"Overall Score: {result_data.get('score', 'N/A')}% "
115
- f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
 
116
  f"Message: {result_data.get('message', 'No message received.')}"
117
  )
118
- print("Submission successful.")
119
- results_df = pd.DataFrame(results_log)
120
- return final_status, results_df
121
- except requests.exceptions.HTTPError as e:
122
- error_detail = f"Server responded with status {e.response.status_code}."
123
- try:
124
- error_json = e.response.json()
125
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
126
- except requests.exceptions.JSONDecodeError:
127
- error_detail += f" Response: {e.response.text[:500]}"
128
- status_message = f"Submission Failed: {error_detail}"
129
- print(status_message)
130
- results_df = pd.DataFrame(results_log)
131
- return status_message, results_df
132
- except requests.exceptions.Timeout:
133
- status_message = "Submission Failed: The request timed out."
134
- print(status_message)
135
- results_df = pd.DataFrame(results_log)
136
- return status_message, results_df
137
- except requests.exceptions.RequestException as e:
138
- status_message = f"Submission Failed: Network error - {e}"
139
- print(status_message)
140
- results_df = pd.DataFrame(results_log)
141
- return status_message, results_df
142
  except Exception as e:
143
- status_message = f"An unexpected error occurred during submission: {e}"
144
- print(status_message)
145
- results_df = pd.DataFrame(results_log)
146
- return status_message, results_df
147
 
148
 
149
- # --- Build Gradio Interface using Blocks ---
 
 
150
  with gr.Blocks() as demo:
151
  gr.Markdown("# Basic Agent Evaluation Runner")
152
- gr.Markdown(
153
- """
154
- **Instructions:**
155
-
156
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
157
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
158
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
159
-
160
- ---
161
- **Disclaimers:**
162
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
163
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
164
- """
165
- )
166
 
167
  gr.LoginButton()
168
-
169
  run_button = gr.Button("Run Evaluation & Submit All Answers")
170
 
171
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
172
- # Removed max_rows=10 from DataFrame constructor
173
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
174
 
175
- run_button.click(
176
- fn=run_and_submit_all,
177
- outputs=[status_output, results_table]
178
- )
179
 
180
  if __name__ == "__main__":
181
- print("\n" + "-"*30 + " App Starting " + "-"*30)
182
- # Check for SPACE_HOST and SPACE_ID at startup for information
183
- space_host_startup = os.getenv("SPACE_HOST")
184
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
185
-
186
- if space_host_startup:
187
- print(f"✅ SPACE_HOST found: {space_host_startup}")
188
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
189
- else:
190
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
191
-
192
- if space_id_startup: # Print repo URLs if SPACE_ID is found
193
- print(f"✅ SPACE_ID found: {space_id_startup}")
194
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
195
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
196
- else:
197
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
198
-
199
- print("-"*(60 + len(" App Starting ")) + "\n")
200
-
201
- print("Launching Gradio Interface for Basic Agent Evaluation...")
202
  demo.launch(debug=True, share=False)
 
1
+ # app.py – vollständige, lauffähige Fassung
2
+ # -------------------------------------------
3
  import os
4
  import gradio as gr
5
  import requests
 
6
  import pandas as pd
7
+
8
+ from agent import agent_executor # dein LangGraph-Agent
9
+ from langchain_core.messages import HumanMessage # NEU: benötigt für llm_input
10
+
11
 
12
  # (Keep Constants as is)
 
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
14
 
15
+
16
+ # ---------------------------------------------------------------------------
17
+ # BasicAgent-Wrapper: ruft den LangGraph-Executor auf
18
+ # ---------------------------------------------------------------------------
19
  class BasicAgent:
20
  def __init__(self):
21
  print("LLM Tool-Enhanced Agent initialized.")
22
 
23
+ # nimmt jetzt ein Dict (messages + task_id) entgegen
24
+ def __call__(self, llm_input: dict) -> str:
25
  try:
26
+ result = agent_executor.invoke(llm_input) # LangGraph ausführen
27
  answer = result["messages"][-1].content
28
  return answer.strip()
29
  except Exception as e:
30
  print(f"Agent error: {e}")
31
  return "I don't know."
32
+
33
+
34
+ # ---------------------------------------------------------------------------
35
+ # GAIA-Runner: Fragen holen Agent laufen lassen Ergebnis submitten
36
+ # ---------------------------------------------------------------------------
37
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
38
+ """Fetch GAIA questions, run agent, submit answers."""
39
+ space_id = os.getenv("SPACE_ID")
40
 
41
  if profile:
42
+ username = f"{profile.username}"
43
  print(f"User logged in: {username}")
44
  else:
45
  print("User not logged in.")
46
  return "Please Login to Hugging Face with the button.", None
47
 
48
+ api_url = DEFAULT_API_URL
49
  questions_url = f"{api_url}/questions"
50
+ submit_url = f"{api_url}/submit"
51
 
52
+ # Agent instanziieren
53
  try:
54
  agent = BasicAgent()
55
  except Exception as e:
 
56
  return f"Error initializing agent: {e}", None
57
+
58
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
59
  print(agent_code)
60
 
61
+ # Fragen holen
 
62
  try:
63
  response = requests.get(questions_url, timeout=15)
64
  response.raise_for_status()
65
  questions_data = response.json()
66
  if not questions_data:
67
+ return "Fetched questions list is empty or invalid format.", None
 
68
  print(f"Fetched {len(questions_data)} questions.")
 
 
 
 
 
 
 
69
  except Exception as e:
70
+ return f"Error fetching questions: {e}", None
 
71
 
72
+ # Agent auf jede Frage anwenden
73
+ results_log, answers_payload = [], []
 
 
74
  for item in questions_data:
75
+ task_id = item.get("task_id")
76
+ question_text = item.get("question")
77
  if not task_id or question_text is None:
 
78
  continue
79
+
80
  try:
81
+ llm_input = {
82
+ "messages": [HumanMessage(content=question_text)],
83
+ "task_id": task_id, # ← WICHTIG!
84
+ }
85
+ submitted_answer = agent(llm_input)
86
+
87
+ answers_payload.append(
88
+ {"task_id": task_id, "submitted_answer": submitted_answer}
89
+ )
90
+ results_log.append(
91
+ {"Task ID": task_id, "Question": question_text,
92
+ "Submitted Answer": submitted_answer}
93
+ )
94
  except Exception as e:
95
+ results_log.append(
96
+ {"Task ID": task_id, "Question": question_text,
97
+ "Submitted Answer": f"AGENT ERROR: {e}"}
98
+ )
99
 
100
  if not answers_payload:
 
101
  return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
102
 
103
+ # Submission
104
+ submission_data = {
105
+ "username": username.strip(),
106
+ "agent_code": agent_code,
107
+ "answers": answers_payload,
108
+ }
 
109
  try:
110
  response = requests.post(submit_url, json=submission_data, timeout=60)
111
  response.raise_for_status()
 
114
  f"Submission Successful!\n"
115
  f"User: {result_data.get('username')}\n"
116
  f"Overall Score: {result_data.get('score', 'N/A')}% "
117
+ f"({result_data.get('correct_count', '?')}/"
118
+ f"{result_data.get('total_attempted', '?')} correct)\n"
119
  f"Message: {result_data.get('message', 'No message received.')}"
120
  )
121
+ return final_status, pd.DataFrame(results_log)
122
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  except Exception as e:
124
+ status_message = f"Submission Failed: {e}"
125
+ return status_message, pd.DataFrame(results_log)
 
 
126
 
127
 
128
+ # ---------------------------------------------------------------------------
129
+ # Gradio-UI (unverändert)
130
+ # ---------------------------------------------------------------------------
131
  with gr.Blocks() as demo:
132
  gr.Markdown("# Basic Agent Evaluation Runner")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  gr.LoginButton()
 
135
  run_button = gr.Button("Run Evaluation & Submit All Answers")
136
 
137
+ status_output = gr.Textbox(label="Run Status / Submission Result",
138
+ lines=5, interactive=False)
139
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
140
 
141
+ run_button.click(fn=run_and_submit_all,
142
+ outputs=[status_output, results_table])
 
 
143
 
144
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
  demo.launch(debug=True, share=False)