Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,111 @@
|
|
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
6 |
-
|
7 |
-
from
|
|
|
|
|
8 |
|
9 |
# (Keep Constants as is)
|
10 |
-
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
|
13 |
-
|
14 |
-
#
|
|
|
|
|
15 |
class BasicAgent:
|
16 |
def __init__(self):
|
17 |
print("LLM Tool-Enhanced Agent initialized.")
|
18 |
|
19 |
-
|
|
|
20 |
try:
|
21 |
-
result = agent_executor.invoke(
|
22 |
answer = result["messages"][-1].content
|
23 |
return answer.strip()
|
24 |
except Exception as e:
|
25 |
print(f"Agent error: {e}")
|
26 |
return "I don't know."
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
space_id = os.getenv("SPACE_ID")
|
35 |
|
36 |
if profile:
|
37 |
-
username= f"{profile.username}"
|
38 |
print(f"User logged in: {username}")
|
39 |
else:
|
40 |
print("User not logged in.")
|
41 |
return "Please Login to Hugging Face with the button.", None
|
42 |
|
43 |
-
api_url
|
44 |
questions_url = f"{api_url}/questions"
|
45 |
-
submit_url
|
46 |
|
47 |
-
#
|
48 |
try:
|
49 |
agent = BasicAgent()
|
50 |
except Exception as e:
|
51 |
-
print(f"Error instantiating agent: {e}")
|
52 |
return f"Error initializing agent: {e}", None
|
53 |
-
|
54 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
55 |
print(agent_code)
|
56 |
|
57 |
-
#
|
58 |
-
print(f"Fetching questions from: {questions_url}")
|
59 |
try:
|
60 |
response = requests.get(questions_url, timeout=15)
|
61 |
response.raise_for_status()
|
62 |
questions_data = response.json()
|
63 |
if not questions_data:
|
64 |
-
|
65 |
-
return "Fetched questions list is empty or invalid format.", None
|
66 |
print(f"Fetched {len(questions_data)} questions.")
|
67 |
-
except requests.exceptions.RequestException as e:
|
68 |
-
print(f"Error fetching questions: {e}")
|
69 |
-
return f"Error fetching questions: {e}", None
|
70 |
-
except requests.exceptions.JSONDecodeError as e:
|
71 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
72 |
-
print(f"Response text: {response.text[:500]}")
|
73 |
-
return f"Error decoding server response for questions: {e}", None
|
74 |
except Exception as e:
|
75 |
-
|
76 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
77 |
|
78 |
-
#
|
79 |
-
results_log = []
|
80 |
-
answers_payload = []
|
81 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
82 |
for item in questions_data:
|
83 |
-
task_id
|
84 |
-
question_text
|
85 |
if not task_id or question_text is None:
|
86 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
87 |
continue
|
|
|
88 |
try:
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
except Exception as e:
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
|
96 |
if not answers_payload:
|
97 |
-
print("Agent did not produce any answers to submit.")
|
98 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
99 |
|
100 |
-
#
|
101 |
-
submission_data = {
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
107 |
try:
|
108 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
109 |
response.raise_for_status()
|
@@ -112,91 +114,32 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
112 |
f"Submission Successful!\n"
|
113 |
f"User: {result_data.get('username')}\n"
|
114 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
115 |
-
f"({result_data.get('correct_count', '?')}/
|
|
|
116 |
f"Message: {result_data.get('message', 'No message received.')}"
|
117 |
)
|
118 |
-
|
119 |
-
|
120 |
-
return final_status, results_df
|
121 |
-
except requests.exceptions.HTTPError as e:
|
122 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
123 |
-
try:
|
124 |
-
error_json = e.response.json()
|
125 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
126 |
-
except requests.exceptions.JSONDecodeError:
|
127 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
128 |
-
status_message = f"Submission Failed: {error_detail}"
|
129 |
-
print(status_message)
|
130 |
-
results_df = pd.DataFrame(results_log)
|
131 |
-
return status_message, results_df
|
132 |
-
except requests.exceptions.Timeout:
|
133 |
-
status_message = "Submission Failed: The request timed out."
|
134 |
-
print(status_message)
|
135 |
-
results_df = pd.DataFrame(results_log)
|
136 |
-
return status_message, results_df
|
137 |
-
except requests.exceptions.RequestException as e:
|
138 |
-
status_message = f"Submission Failed: Network error - {e}"
|
139 |
-
print(status_message)
|
140 |
-
results_df = pd.DataFrame(results_log)
|
141 |
-
return status_message, results_df
|
142 |
except Exception as e:
|
143 |
-
status_message = f"
|
144 |
-
|
145 |
-
results_df = pd.DataFrame(results_log)
|
146 |
-
return status_message, results_df
|
147 |
|
148 |
|
149 |
-
#
|
|
|
|
|
150 |
with gr.Blocks() as demo:
|
151 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
152 |
-
gr.Markdown(
|
153 |
-
"""
|
154 |
-
**Instructions:**
|
155 |
-
|
156 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
157 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
158 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
159 |
-
|
160 |
-
---
|
161 |
-
**Disclaimers:**
|
162 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
163 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
164 |
-
"""
|
165 |
-
)
|
166 |
|
167 |
gr.LoginButton()
|
168 |
-
|
169 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
170 |
|
171 |
-
status_output = gr.Textbox(label="Run Status / Submission Result",
|
172 |
-
|
173 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
174 |
|
175 |
-
run_button.click(
|
176 |
-
|
177 |
-
outputs=[status_output, results_table]
|
178 |
-
)
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
182 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
183 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
184 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
185 |
-
|
186 |
-
if space_host_startup:
|
187 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
188 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
189 |
-
else:
|
190 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
191 |
-
|
192 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
193 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
194 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
195 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
196 |
-
else:
|
197 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
198 |
-
|
199 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
200 |
-
|
201 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
202 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
# app.py – vollständige, lauffähige Fassung
|
2 |
+
# -------------------------------------------
|
3 |
import os
|
4 |
import gradio as gr
|
5 |
import requests
|
|
|
6 |
import pandas as pd
|
7 |
+
|
8 |
+
from agent import agent_executor # dein LangGraph-Agent
|
9 |
+
from langchain_core.messages import HumanMessage # NEU: benötigt für llm_input
|
10 |
+
|
11 |
|
12 |
# (Keep Constants as is)
|
|
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
+
|
16 |
+
# ---------------------------------------------------------------------------
|
17 |
+
# BasicAgent-Wrapper: ruft den LangGraph-Executor auf
|
18 |
+
# ---------------------------------------------------------------------------
|
19 |
class BasicAgent:
|
20 |
def __init__(self):
|
21 |
print("LLM Tool-Enhanced Agent initialized.")
|
22 |
|
23 |
+
# nimmt jetzt ein Dict (messages + task_id) entgegen
|
24 |
+
def __call__(self, llm_input: dict) -> str:
|
25 |
try:
|
26 |
+
result = agent_executor.invoke(llm_input) # LangGraph ausführen
|
27 |
answer = result["messages"][-1].content
|
28 |
return answer.strip()
|
29 |
except Exception as e:
|
30 |
print(f"Agent error: {e}")
|
31 |
return "I don't know."
|
32 |
+
|
33 |
+
|
34 |
+
# ---------------------------------------------------------------------------
|
35 |
+
# GAIA-Runner: Fragen holen → Agent laufen lassen → Ergebnis submitten
|
36 |
+
# ---------------------------------------------------------------------------
|
37 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
38 |
+
"""Fetch GAIA questions, run agent, submit answers."""
|
39 |
+
space_id = os.getenv("SPACE_ID")
|
40 |
|
41 |
if profile:
|
42 |
+
username = f"{profile.username}"
|
43 |
print(f"User logged in: {username}")
|
44 |
else:
|
45 |
print("User not logged in.")
|
46 |
return "Please Login to Hugging Face with the button.", None
|
47 |
|
48 |
+
api_url = DEFAULT_API_URL
|
49 |
questions_url = f"{api_url}/questions"
|
50 |
+
submit_url = f"{api_url}/submit"
|
51 |
|
52 |
+
# Agent instanziieren
|
53 |
try:
|
54 |
agent = BasicAgent()
|
55 |
except Exception as e:
|
|
|
56 |
return f"Error initializing agent: {e}", None
|
57 |
+
|
58 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
59 |
print(agent_code)
|
60 |
|
61 |
+
# Fragen holen
|
|
|
62 |
try:
|
63 |
response = requests.get(questions_url, timeout=15)
|
64 |
response.raise_for_status()
|
65 |
questions_data = response.json()
|
66 |
if not questions_data:
|
67 |
+
return "Fetched questions list is empty or invalid format.", None
|
|
|
68 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
except Exception as e:
|
70 |
+
return f"Error fetching questions: {e}", None
|
|
|
71 |
|
72 |
+
# Agent auf jede Frage anwenden
|
73 |
+
results_log, answers_payload = [], []
|
|
|
|
|
74 |
for item in questions_data:
|
75 |
+
task_id = item.get("task_id")
|
76 |
+
question_text = item.get("question")
|
77 |
if not task_id or question_text is None:
|
|
|
78 |
continue
|
79 |
+
|
80 |
try:
|
81 |
+
llm_input = {
|
82 |
+
"messages": [HumanMessage(content=question_text)],
|
83 |
+
"task_id": task_id, # ← WICHTIG!
|
84 |
+
}
|
85 |
+
submitted_answer = agent(llm_input)
|
86 |
+
|
87 |
+
answers_payload.append(
|
88 |
+
{"task_id": task_id, "submitted_answer": submitted_answer}
|
89 |
+
)
|
90 |
+
results_log.append(
|
91 |
+
{"Task ID": task_id, "Question": question_text,
|
92 |
+
"Submitted Answer": submitted_answer}
|
93 |
+
)
|
94 |
except Exception as e:
|
95 |
+
results_log.append(
|
96 |
+
{"Task ID": task_id, "Question": question_text,
|
97 |
+
"Submitted Answer": f"AGENT ERROR: {e}"}
|
98 |
+
)
|
99 |
|
100 |
if not answers_payload:
|
|
|
101 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
102 |
|
103 |
+
# Submission
|
104 |
+
submission_data = {
|
105 |
+
"username": username.strip(),
|
106 |
+
"agent_code": agent_code,
|
107 |
+
"answers": answers_payload,
|
108 |
+
}
|
|
|
109 |
try:
|
110 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
111 |
response.raise_for_status()
|
|
|
114 |
f"Submission Successful!\n"
|
115 |
f"User: {result_data.get('username')}\n"
|
116 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
117 |
+
f"({result_data.get('correct_count', '?')}/"
|
118 |
+
f"{result_data.get('total_attempted', '?')} correct)\n"
|
119 |
f"Message: {result_data.get('message', 'No message received.')}"
|
120 |
)
|
121 |
+
return final_status, pd.DataFrame(results_log)
|
122 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
except Exception as e:
|
124 |
+
status_message = f"Submission Failed: {e}"
|
125 |
+
return status_message, pd.DataFrame(results_log)
|
|
|
|
|
126 |
|
127 |
|
128 |
+
# ---------------------------------------------------------------------------
|
129 |
+
# Gradio-UI (unverändert)
|
130 |
+
# ---------------------------------------------------------------------------
|
131 |
with gr.Blocks() as demo:
|
132 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
gr.LoginButton()
|
|
|
135 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
136 |
|
137 |
+
status_output = gr.Textbox(label="Run Status / Submission Result",
|
138 |
+
lines=5, interactive=False)
|
139 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
140 |
|
141 |
+
run_button.click(fn=run_and_submit_all,
|
142 |
+
outputs=[status_output, results_table])
|
|
|
|
|
143 |
|
144 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
demo.launch(debug=True, share=False)
|