import os from langgraph.graph import StateGraph, START, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.tools import tool from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper from langchain_core.messages import SystemMessage, HumanMessage # Lade Umgebungsvariablen (Google API Key) GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") # === Tools definieren === @tool def multiply(a: int, b: int) -> int: """Multiplies two numbers.""" return a * b @tool def add(a: int, b: int) -> int: """Adds two numbers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtracts two numbers.""" return a - b @tool def divide(a: int, b: int) -> float: """Divides two numbers.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulo(a: int, b: int) -> int: """Returns the remainder of dividing two numbers.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return the result.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() return "\n\n".join(doc.page_content for doc in search_docs) @tool def arxiv_search(query: str) -> str: """Search Arxiv for academic papers about a query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() return "\n\n".join(doc.page_content[:1000] for doc in search_docs) @tool def web_search(query: str) -> str: """Perform a DuckDuckGo web search.""" wrapper = DuckDuckGoSearchAPIWrapper(max_results=5) results = wrapper.run(query) return results # === System Prompt definieren === system_prompt = SystemMessage(content=( "You are an expert assistant. You MUST answer precisely, factually, and accurately. " "If you do not know the answer, use the available tools such as Wikipedia Search, Arxiv Search, " "or Web Search to find the correct information. " "If a math operation is needed, use the calculation tools. " "Do NOT invent answers. Only return answers you are confident in." )) # === LLM definieren === llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash", google_api_key=GOOGLE_API_KEY, temperature=0, max_output_tokens=2048, system_message=system_prompt, ) # === Tools in LLM einbinden === tools = [multiply, add, subtract, divide, modulo, wiki_search, arxiv_search, web_search] llm_with_tools = llm.bind_tools(tools) # === Nodes für LangGraph === def assistant(state: MessagesState): return {"messages": [llm_with_tools.invoke(state["messages"])]} # === LangGraph bauen === builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") # === Agent Executor === agent_executor = builder.compile()