import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_community.tools.duckduckgo_search import DuckDuckGoSearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain_google_genai import ChatGoogleGenerativeAI # .env laden (falls lokal) load_dotenv() # Google API Key aus Environment GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") # --- Tools definieren --- @tool def multiply(a: int, b: int) -> int: """Multiplies two numbers.""" return a * b @tool def add(a: int, b: int) -> int: """Adds two numbers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtracts two numbers.""" return a - b @tool def divide(a: int, b: int) -> float: """Divides two numbers.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulo(a: int, b: int) -> int: """Returns the remainder after division.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return up to 2 results.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ] ) return {"wiki_results": formatted_search_docs} @tool def arxiv_search(query: str) -> str: """Search Arxiv for a query and return up to 3 results.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ] ) return {"arxiv_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search DuckDuckGo for a query and return results.""" search = DuckDuckGoSearchResults(max_results=5) return search.run(query) # Tools-Liste tools = [ multiply, add, subtract, divide, modulo, wiki_search, arxiv_search, web_search, ] # System Prompt system_prompt = ( "You are a highly accurate AI assistant. " "Use tools when needed. Be very concise and precise. " "Do not hallucinate information." ) sys_msg = SystemMessage(content=system_prompt) # --- Build Graph --- def build_graph(): llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash", google_api_key=GOOGLE_API_KEY, temperature=0, max_output_tokens=2048, system_message=sys_msg, ) llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): """Assistant Node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile() # --- Agent Executor für app.py --- def agent_executor(question: str) -> str: graph = build_graph() messages = [HumanMessage(content=question)] result = graph.invoke({"messages": messages}) return result["messages"][-1].content