# app.py – vollständige, lauffähige Fassung # ------------------------------------------- import os import gradio as gr import requests import pandas as pd from agent import agent_executor # dein LangGraph-Agent from langchain_core.messages import HumanMessage # NEU: benötigt für llm_input # (Keep Constants as is) DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" # --------------------------------------------------------------------------- # BasicAgent-Wrapper: ruft den LangGraph-Executor auf # --------------------------------------------------------------------------- class BasicAgent: def __init__(self): print("LLM Tool-Enhanced Agent initialized.") # nimmt jetzt ein Dict (messages + task_id) entgegen def __call__(self, llm_input: dict) -> str: try: result = agent_executor.invoke(llm_input) # LangGraph ausführen answer = result["messages"][-1].content return answer.strip() except Exception as e: print(f"Agent error: {e}") return "I don't know." # --------------------------------------------------------------------------- # GAIA-Runner: Fragen holen → Agent laufen lassen → Ergebnis submitten # --------------------------------------------------------------------------- def run_and_submit_all(profile: gr.OAuthProfile | None): """Fetch GAIA questions, run agent, submit answers.""" space_id = os.getenv("SPACE_ID") if profile: username = f"{profile.username}" print(f"User logged in: {username}") else: print("User not logged in.") return "Please Login to Hugging Face with the button.", None api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" # Agent instanziieren try: agent = BasicAgent() except Exception as e: return f"Error initializing agent: {e}", None agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" print(agent_code) # Fragen holen try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except Exception as e: return f"Error fetching questions: {e}", None # Agent auf jede Frage anwenden results_log, answers_payload = [], [] for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: continue try: llm_input = { "messages": [HumanMessage(content=question_text)], "task_id": task_id, # ← WICHTIG! } submitted_answer = agent(llm_input) answers_payload.append( {"task_id": task_id, "submitted_answer": submitted_answer} ) results_log.append( {"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer} ) except Exception as e: results_log.append( {"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"} ) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) # Submission submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload, } try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/" f"{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) return final_status, pd.DataFrame(results_log) except Exception as e: status_message = f"Submission Failed: {e}" return status_message, pd.DataFrame(results_log) # --------------------------------------------------------------------------- # Gradio-UI (unverändert) # --------------------------------------------------------------------------- with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table]) if __name__ == "__main__": demo.launch(debug=True, share=False)