import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_community.tools.duckduckgo_search import DuckDuckGoSearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain_google_genai import ChatGoogleGenerativeAI load_dotenv() GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") # --- Define Tools --- @tool def multiply(a: int, b: int) -> int: """Multiplies two numbers.""" return a * b @tool def add(a: int, b: int) -> int: """Adds two numbers.""" return a + b @tool def subtract(a: int, b: int) -> int: """Subtracts two numbers.""" return a - b @tool def divide(a: int, b: int) -> float: """Divides two numbers.""" if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulo(a: int, b: int) -> int: """Returns the remainder of dividing two numbers.""" return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return up to 2 results.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted = "\n\n---\n\n".join( [f'\n{doc.page_content}\n' for doc in search_docs] ) return formatted @tool def arxiv_search(query: str) -> str: """Search Arxiv for scientific papers matching the query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted = "\n\n---\n\n".join( [f'\n{doc.page_content[:1000]}\n' for doc in search_docs] ) return formatted @tool def web_search(query: str) -> str: """Search the web using DuckDuckGo.""" search = DuckDuckGoSearchResults() return search.run(query) # --- Load System Prompt --- with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() sys_msg = SystemMessage(content=system_prompt) # --- Define Tools List --- tools = [ multiply, add, subtract, divide, modulo, wiki_search, arxiv_search, web_search, ] # --- Build Graph Function --- def build_graph(): llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash", google_api_key=GOOGLE_API_KEY, temperature=0, max_output_tokens=2048, system_message=sys_msg ) llm_with_tools = llm.bind_tools(tools) def assistant(state: MessagesState): """Assistant Node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} builder = StateGraph(MessagesState) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "assistant") builder.add_conditional_edges("assistant", tools_condition) builder.add_edge("tools", "assistant") return builder.compile()