Spaces:
Sleeping
Sleeping
#!/usr/bin/env python3 | |
""" | |
Test script for the GAIA agent using real API keys. | |
This script simulates GAIA benchmark questions and helps debug/improve the agent. | |
""" | |
import os | |
import sys | |
import json | |
import tempfile | |
from typing import List, Dict, Any, Optional | |
import traceback | |
import dotenv | |
# Load environment variables from .env file | |
dotenv.load_dotenv() | |
# Import our agent | |
from core_agent import GAIAAgent | |
# Simulation of GAIA benchmark questions | |
SAMPLE_QUESTIONS = [ | |
{ | |
"task_id": "task_001", | |
"question": "What is the capital of France?", | |
"expected_answer": "Paris", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_002", | |
"question": "What is the square root of 144?", | |
"expected_answer": "12", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_003", | |
"question": "If a train travels at 60 miles per hour, how far will it travel in 2.5 hours?", | |
"expected_answer": "150 miles", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_004", | |
"question": ".rewsna eht sa 'thgir' drow eht etirw ,tfel fo etisoppo eht si tahW", | |
"expected_answer": "right", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_005", | |
"question": "Analyze the data in the attached CSV file and tell me the total sales for the month of January.", | |
"expected_answer": "$10,250.75", | |
"has_file": True, | |
"file_content": """Date,Product,Quantity,Price,Total | |
2023-01-05,Widget A,10,25.99,259.90 | |
2023-01-12,Widget B,5,45.50,227.50 | |
2023-01-15,Widget C,20,50.25,1005.00 | |
2023-01-20,Widget A,15,25.99,389.85 | |
2023-01-25,Widget B,8,45.50,364.00 | |
2023-01-28,Widget D,100,80.04,8004.50""" | |
}, | |
{ | |
"task_id": "task_006", | |
"question": "I'm making a grocery list for my mom, but she's a picky eater. She only eats foods that don't contain the letter 'e'. List 5 common fruits and vegetables she can eat.", | |
"expected_answer": "Banana, Kiwi, Corn, Fig, Taro", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_007", | |
"question": "How many studio albums were published by Mercedes Sosa between 1972 and 1985?", | |
"expected_answer": "12", | |
"has_file": False, | |
"file_content": None | |
}, | |
{ | |
"task_id": "task_008", | |
"question": "In the video https://www.youtube.com/watch?v=L1vXC1KMRd0, what color is primarily associated with the main character?", | |
"expected_answer": "Blue", | |
"has_file": False, | |
"file_content": None | |
} | |
] | |
def initialize_agent(): | |
"""Initialize the GAIAAgent with appropriate API keys.""" | |
print("Initializing GAIAAgent with API keys...") | |
# Try X.AI first (xAI) with the correct API endpoint | |
if os.getenv("XAI_API_KEY"): | |
print("Using X.AI API key") | |
try: | |
agent = GAIAAgent( | |
model_type="OpenAIServerModel", | |
model_id="grok-3-latest", # Use the X.AI model | |
api_key=os.getenv("XAI_API_KEY"), | |
api_base="https://api.x.ai/v1", # Correct X.AI endpoint | |
temperature=0.2, | |
executor_type="local", | |
verbose=True, | |
system_prompt_suffix=additional_system_prompt # Add our hints | |
) | |
print("Using OpenAIServerModel with X.AI API") | |
return agent | |
except Exception as e: | |
print(f"Error initializing with X.AI API: {e}") | |
traceback.print_exc() | |
# Then try OpenAI | |
if os.getenv("OPENAI_API_KEY"): | |
print("Using OpenAI API key") | |
try: | |
model_id = os.getenv("AGENT_MODEL_ID", "gpt-4o") | |
agent = GAIAAgent( | |
model_type="OpenAIServerModel", | |
model_id=model_id, | |
api_key=os.getenv("OPENAI_API_KEY"), | |
temperature=0.2, | |
executor_type="local", | |
verbose=True | |
) | |
print(f"Using OpenAIServerModel with model_id: {model_id}") | |
return agent | |
except Exception as e: | |
print(f"Error initializing with OpenAI API: {e}") | |
traceback.print_exc() | |
# Last resort, try Hugging Face | |
if os.getenv("HUGGINGFACEHUB_API_TOKEN"): | |
print("Using Hugging Face API token") | |
try: | |
# Use a smaller model that might work within free tier | |
model_id = "tiiuae/falcon-7b-instruct" # Try a smaller model that might be within free tier | |
agent = GAIAAgent( | |
model_type="HfApiModel", | |
model_id=model_id, | |
api_key=os.getenv("HUGGINGFACEHUB_API_TOKEN"), | |
temperature=0.2, | |
executor_type="local", | |
verbose=True | |
) | |
print(f"Using HfApiModel with model_id: {model_id}") | |
return agent | |
except Exception as e: | |
print(f"Error initializing with Hugging Face API: {e}") | |
traceback.print_exc() | |
print("ERROR: No valid API keys found in environment. Please set one of the following:") | |
print("- XAI_API_KEY (for X.AI)") | |
print("- OPENAI_API_KEY") | |
print("- HUGGINGFACEHUB_API_TOKEN") | |
return None | |
def save_test_file(task_id: str, content: str) -> str: | |
"""Save a test file to a temporary location.""" | |
temp_dir = tempfile.gettempdir() | |
file_path = os.path.join(temp_dir, f"test_file_{task_id}.csv") | |
with open(file_path, 'w') as f: | |
f.write(content) | |
return file_path | |
def run_tests(): | |
"""Run tests using the GAIAAgent with API keys.""" | |
agent = initialize_agent() | |
if not agent: | |
print("Failed to initialize agent. Exiting.") | |
return | |
results = [] | |
correct_count = 0 | |
total_count = len(SAMPLE_QUESTIONS) | |
for idx, question_data in enumerate(SAMPLE_QUESTIONS): | |
task_id = question_data["task_id"] | |
question = question_data["question"] | |
expected = question_data["expected_answer"] | |
print(f"\n{'='*80}") | |
print(f"Question {idx+1}/{total_count}: {question}") | |
print(f"Expected: {expected}") | |
# Process any attached file | |
file_path = None | |
if question_data["has_file"] and question_data["file_content"]: | |
file_path = save_test_file(task_id, question_data["file_content"]) | |
print(f"Created test file: {file_path}") | |
# Get answer from agent | |
try: | |
answer = agent.answer_question(question, file_path) | |
print(f"Agent answer: {answer}") | |
# Check if answer matches expected | |
is_correct = answer.lower() == expected.lower() | |
if is_correct: | |
correct_count += 1 | |
print(f"✅ CORRECT") | |
else: | |
print(f"❌ INCORRECT - Expected: {expected}") | |
results.append({ | |
"task_id": task_id, | |
"question": question, | |
"expected": expected, | |
"answer": answer, | |
"is_correct": is_correct | |
}) | |
except Exception as e: | |
error_details = traceback.format_exc() | |
print(f"Error processing question: {e}\n{error_details}") | |
results.append({ | |
"task_id": task_id, | |
"question": question, | |
"expected": expected, | |
"answer": f"ERROR: {str(e)}", | |
"is_correct": False | |
}) | |
# Print summary | |
accuracy = (correct_count / total_count) * 100 | |
print(f"\n{'='*80}") | |
print(f"Test Results: {correct_count}/{total_count} correct ({accuracy:.1f}%)") | |
return results | |
if __name__ == "__main__": | |
print("Running tests for GAIA agent with API keys...") | |
# Print environment information | |
print("\nEnvironment information:") | |
print(f"XAI_API_KEY set: {'Yes' if os.getenv('XAI_API_KEY') else 'No'}") | |
print(f"OPENAI_API_KEY set: {'Yes' if os.getenv('OPENAI_API_KEY') else 'No'}") | |
print(f"HUGGINGFACEHUB_API_TOKEN set: {'Yes' if os.getenv('HUGGINGFACEHUB_API_TOKEN') else 'No'}") | |
print(f"AGENT_MODEL_TYPE: {os.getenv('AGENT_MODEL_TYPE', 'OpenAIServerModel')} (default: OpenAIServerModel)") | |
print(f"AGENT_MODEL_ID: {os.getenv('AGENT_MODEL_ID', 'gpt-4o')} (default: gpt-4o)") | |
results = run_tests() | |
# Save results to a file | |
with open("test_results.json", "w") as f: | |
json.dump(results, f, indent=2) | |
print("\nResults saved to test_results.json") |