Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
import joblib | |
import warnings | |
from huggingface_hub import hf_hub_download | |
warnings.filterwarnings("ignore") | |
# Load ensemble model | |
def load_model(): | |
model_path = hf_hub_download( | |
repo_id="Zeyadd-Mostaffa/final_ensemble_model", | |
filename="final_ensemble_model.pkl" | |
) | |
model = joblib.load(model_path) | |
print("β Ensemble model loaded successfully.") | |
return model | |
# Load scaler | |
def load_scaler(): | |
scaler_path = hf_hub_download( | |
repo_id="Zeyadd-Mostaffa/final_ensemble_model", | |
filename="scaler.pkl" | |
) | |
scaler = joblib.load(scaler_path) | |
print("β Scaler loaded successfully.") | |
return scaler | |
model = load_model() | |
scaler = load_scaler() | |
# Define prediction function | |
def predict_employee_status( | |
satisfaction_level, last_evaluation, number_project, | |
average_monthly_hours, time_spend_company, | |
work_accident, promotion_last_5years, salary, department, threshold=0.5 | |
): | |
expected_columns = [ | |
'satisfaction_level', 'last_evaluation', 'number_project', 'average_monthly_hours', | |
'time_spend_company', 'Work_accident', 'promotion_last_5years', 'salary', | |
'satisfaction_evaluation', 'work_balance', | |
'department_IT', 'department_RandD', 'department_accounting', 'department_hr', | |
'department_management', 'department_marketing', 'department_product_mng', | |
'department_sales', 'department_support', 'department_technical' | |
] | |
department_features = {col: 0 for col in expected_columns if col.startswith("department_")} | |
dept_key = f"department_{department}" | |
if dept_key in department_features: | |
department_features[dept_key] = 1 | |
satisfaction_evaluation = satisfaction_level * last_evaluation | |
work_balance = average_monthly_hours / number_project | |
input_data = { | |
"satisfaction_level": [satisfaction_level], | |
"last_evaluation": [last_evaluation], | |
"number_project": [number_project], | |
"average_monthly_hours": [average_monthly_hours], | |
"time_spend_company": [time_spend_company], | |
"Work_accident": [work_accident], | |
"promotion_last_5years": [promotion_last_5years], | |
"salary": [salary], | |
"satisfaction_evaluation": [satisfaction_evaluation], | |
"work_balance": [work_balance], | |
**department_features | |
} | |
input_df = pd.DataFrame(input_data) | |
# Ensure all expected columns exist | |
for col in expected_columns: | |
if col not in input_df.columns: | |
input_df[col] = 0 | |
input_df = input_df[expected_columns] | |
# Apply scaling to same numerical columns as training | |
numeric_cols = [ | |
'satisfaction_level', 'last_evaluation', | |
'average_monthly_hours', 'number_project', 'work_balance' | |
] | |
input_df[numeric_cols] = scaler.transform(input_df[numeric_cols]) | |
try: | |
prob = model.predict_proba(input_df)[0][1] | |
result = "β Employee is likely to quit." if prob >= threshold else "β Employee is likely to stay." | |
return f"{result} (Probability: {prob:.2%})" | |
except Exception as e: | |
return f"β Prediction error: {str(e)}" | |
# Gradio UI | |
def gradio_interface(): | |
interface = gr.Interface( | |
fn=predict_employee_status, | |
inputs=[ | |
gr.Number(label="Satisfaction Level (0.0 - 1.0)"), | |
gr.Number(label="Last Evaluation (0.0 - 1.0)"), | |
gr.Number(label="Number of Projects (1 - 10)"), | |
gr.Number(label="Average Monthly Hours (80 - 320)"), | |
gr.Number(label="Time Spend at Company (Years)"), | |
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"), | |
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"), | |
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"), | |
gr.Dropdown( | |
['IT', 'RandD', 'accounting', 'hr', 'management', | |
'marketing', 'product_mng', 'sales', 'support', 'technical'], | |
label="Department" | |
), | |
gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold") | |
], | |
outputs="text", | |
title="Employee Retention Prediction System (Voting Ensemble)", | |
description="Predict whether an employee is likely to stay or quit based on their profile. Supports threshold adjustment.", | |
theme="dark" | |
) | |
interface.launch() | |
gradio_interface() | |