Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,6 @@ import os
|
|
7 |
import warnings
|
8 |
import shap
|
9 |
import matplotlib.pyplot as plt
|
10 |
-
from sklearn.metrics import roc_curve, precision_recall_curve
|
11 |
-
from imblearn.over_sampling import SMOTE
|
12 |
|
13 |
# Suppress XGBoost warnings
|
14 |
warnings.filterwarnings("ignore", category=UserWarning, message=".*WARNING.*")
|
@@ -27,7 +25,7 @@ def load_model():
|
|
27 |
|
28 |
model = load_model()
|
29 |
|
30 |
-
# Prediction function with
|
31 |
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
32 |
average_monthly_hours, time_spent_company,
|
33 |
work_accident, promotion_last_5years, salary, department, threshold=0.5):
|
@@ -41,22 +39,22 @@ def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
|
41 |
if department in departments:
|
42 |
department_features[f"department_{department}"] = 1
|
43 |
|
44 |
-
#
|
45 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
46 |
work_balance = average_monthly_hours / number_project
|
47 |
|
48 |
-
# Prepare the input with all expected features
|
49 |
input_data = {
|
50 |
"satisfaction_level": [satisfaction_level],
|
51 |
"last_evaluation": [last_evaluation],
|
52 |
"number_project": [number_project],
|
53 |
"average_monthly_hours": [average_monthly_hours],
|
54 |
-
"time_spent_company": [time_spent_company],
|
55 |
"Work_accident": [work_accident],
|
56 |
"promotion_last_5years": [promotion_last_5years],
|
57 |
"salary": [salary],
|
58 |
-
"satisfaction_evaluation": [satisfaction_evaluation],
|
59 |
-
"work_balance": [work_balance],
|
60 |
**department_features
|
61 |
}
|
62 |
|
@@ -73,30 +71,11 @@ def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
|
73 |
|
74 |
# Apply the dynamic threshold
|
75 |
result = "β
Employee is likely to quit." if prediction_prob >= threshold else "β
Employee is likely to stay."
|
76 |
-
|
77 |
-
return f"{result} (Probability: {prediction_prob:.2%})\n\nExplanation:\n{explanation}"
|
78 |
except Exception as e:
|
79 |
return f"β Error: {str(e)}"
|
80 |
|
81 |
-
#
|
82 |
-
def explain_prediction(input_df):
|
83 |
-
try:
|
84 |
-
explainer = shap.TreeExplainer(model)
|
85 |
-
shap_values = explainer.shap_values(input_df)
|
86 |
-
|
87 |
-
# Generate and save SHAP explanation as an image
|
88 |
-
shap.initjs()
|
89 |
-
plt.figure()
|
90 |
-
shap.waterfall_plot(shap.Explanation(values=shap_values[0],
|
91 |
-
base_values=explainer.expected_value,
|
92 |
-
data=input_df.iloc[0].values,
|
93 |
-
feature_names=input_df.columns))
|
94 |
-
plt.savefig("shap_explanation.png")
|
95 |
-
return "SHAP explanation generated for this prediction."
|
96 |
-
except Exception as e:
|
97 |
-
return f"β Error in SHAP: {str(e)}"
|
98 |
-
|
99 |
-
# Gradio interface with dynamic threshold and SHAP
|
100 |
def gradio_interface():
|
101 |
interface = gr.Interface(
|
102 |
fn=predict_employee_status,
|
@@ -105,7 +84,7 @@ def gradio_interface():
|
|
105 |
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
|
106 |
gr.Number(label="Number of Projects (1 - 10)"),
|
107 |
gr.Number(label="Average Monthly Hours (80 - 320)"),
|
108 |
-
gr.Number(label="Time Spent at Company (Years)"),
|
109 |
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
|
110 |
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
|
111 |
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
|
@@ -124,4 +103,3 @@ def gradio_interface():
|
|
124 |
interface.launch()
|
125 |
|
126 |
gradio_interface()
|
127 |
-
|
|
|
7 |
import warnings
|
8 |
import shap
|
9 |
import matplotlib.pyplot as plt
|
|
|
|
|
10 |
|
11 |
# Suppress XGBoost warnings
|
12 |
warnings.filterwarnings("ignore", category=UserWarning, message=".*WARNING.*")
|
|
|
25 |
|
26 |
model = load_model()
|
27 |
|
28 |
+
# Prediction function with consistent feature names
|
29 |
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
30 |
average_monthly_hours, time_spent_company,
|
31 |
work_accident, promotion_last_5years, salary, department, threshold=0.5):
|
|
|
39 |
if department in departments:
|
40 |
department_features[f"department_{department}"] = 1
|
41 |
|
42 |
+
# Generate Interaction Features
|
43 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
44 |
work_balance = average_monthly_hours / number_project
|
45 |
|
46 |
+
# Prepare the input with all expected features
|
47 |
input_data = {
|
48 |
"satisfaction_level": [satisfaction_level],
|
49 |
"last_evaluation": [last_evaluation],
|
50 |
"number_project": [number_project],
|
51 |
"average_monthly_hours": [average_monthly_hours],
|
52 |
+
"time_spent_company": [time_spent_company], # Corrected
|
53 |
"Work_accident": [work_accident],
|
54 |
"promotion_last_5years": [promotion_last_5years],
|
55 |
"salary": [salary],
|
56 |
+
"satisfaction_evaluation": [satisfaction_evaluation], # Added
|
57 |
+
"work_balance": [work_balance], # Added
|
58 |
**department_features
|
59 |
}
|
60 |
|
|
|
71 |
|
72 |
# Apply the dynamic threshold
|
73 |
result = "β
Employee is likely to quit." if prediction_prob >= threshold else "β
Employee is likely to stay."
|
74 |
+
return f"{result} (Probability: {prediction_prob:.2%})"
|
|
|
75 |
except Exception as e:
|
76 |
return f"β Error: {str(e)}"
|
77 |
|
78 |
+
# Gradio interface with consistent feature names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
def gradio_interface():
|
80 |
interface = gr.Interface(
|
81 |
fn=predict_employee_status,
|
|
|
84 |
gr.Number(label="Last Evaluation (0.0 - 1.0)"),
|
85 |
gr.Number(label="Number of Projects (1 - 10)"),
|
86 |
gr.Number(label="Average Monthly Hours (80 - 320)"),
|
87 |
+
gr.Number(label="Time Spent at Company (Years)"), # Corrected
|
88 |
gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
|
89 |
gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
|
90 |
gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
|
|
|
103 |
interface.launch()
|
104 |
|
105 |
gradio_interface()
|
|