Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +40 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
import h5py
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Download model only if not already present
|
10 |
+
model_path = "xception_model.h5"
|
11 |
+
if not os.path.exists(model_path):
|
12 |
+
url = "https://huggingface.co/Zeyadd-Mostaffa/cv_GP/resolve/main/xception_model.h5"
|
13 |
+
with open(model_path, "wb") as f:
|
14 |
+
f.write(requests.get(url).content)
|
15 |
+
|
16 |
+
# Load model
|
17 |
+
model = load_model(model_path)
|
18 |
+
|
19 |
+
# Preprocess function
|
20 |
+
def preprocess_image(image):
|
21 |
+
image = image.resize((150, 150)).convert("RGB")
|
22 |
+
arr = np.array(image) / 255.0
|
23 |
+
return np.expand_dims(arr, axis=0)
|
24 |
+
|
25 |
+
# Prediction function
|
26 |
+
def predict(image):
|
27 |
+
img = preprocess_image(image)
|
28 |
+
prob = model.predict(img)[0][0]
|
29 |
+
label = "REAL" if prob >= 0.5 else "FAKE"
|
30 |
+
return {"REAL": 1 - prob, "FAKE": prob}, f"Prediction: {label}"
|
31 |
+
|
32 |
+
# Gradio UI
|
33 |
+
demo = gr.Interface(
|
34 |
+
fn=predict,
|
35 |
+
inputs=gr.Image(type="pil"),
|
36 |
+
outputs=[gr.Label(num_top_classes=2), gr.Text()],
|
37 |
+
title="Deepfake Detection (Xception Model)"
|
38 |
+
)
|
39 |
+
|
40 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
tensorflow
|
3 |
+
pillow
|
4 |
+
numpy
|
5 |
+
requests
|
6 |
+
h5py
|