Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,24 +5,26 @@ from tensorflow.keras.preprocessing.image import img_to_array
|
|
5 |
from PIL import Image
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
-
# Download
|
9 |
model_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/cv_GP", filename="xception_model.h5")
|
10 |
model = load_model(model_path)
|
11 |
|
12 |
-
#
|
13 |
def predict(image):
|
14 |
-
# Resize image to expected shape (299x299x3 for Xception)
|
15 |
image = image.resize((299, 299))
|
16 |
image = img_to_array(image)
|
17 |
image = np.expand_dims(image, axis=0)
|
18 |
-
image = image / 255.0 #
|
19 |
|
20 |
prob = model.predict(image)[0][0]
|
21 |
-
|
|
|
|
|
22 |
confidence = round(float(prob if prob > 0.5 else 1 - prob), 3)
|
|
|
23 |
return f"{label} ({confidence})"
|
24 |
|
25 |
-
# Gradio
|
26 |
iface = gr.Interface(
|
27 |
fn=predict,
|
28 |
inputs=gr.Image(type="pil"),
|
|
|
5 |
from PIL import Image
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
+
# Download and load the model
|
9 |
model_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/cv_GP", filename="xception_model.h5")
|
10 |
model = load_model(model_path)
|
11 |
|
12 |
+
# Inference function
|
13 |
def predict(image):
|
|
|
14 |
image = image.resize((299, 299))
|
15 |
image = img_to_array(image)
|
16 |
image = np.expand_dims(image, axis=0)
|
17 |
+
image = image / 255.0 # normalize to match training
|
18 |
|
19 |
prob = model.predict(image)[0][0]
|
20 |
+
|
21 |
+
# Based on your notebook: label 0 = Fake, label 1 = Real
|
22 |
+
label = "Real" if prob > 0.5 else "Fake"
|
23 |
confidence = round(float(prob if prob > 0.5 else 1 - prob), 3)
|
24 |
+
|
25 |
return f"{label} ({confidence})"
|
26 |
|
27 |
+
# Gradio interface
|
28 |
iface = gr.Interface(
|
29 |
fn=predict,
|
30 |
inputs=gr.Image(type="pil"),
|