import gradio as gr import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array from PIL import Image from huggingface_hub import hf_hub_download # Download the model from the Hugging Face model hub model_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/cv_GP", filename="xception_model.h5") model = load_model(model_path) # Preprocessing and prediction def predict(image): # Resize image to expected shape (299x299x3 for Xception) image = image.resize((299, 299)) image = img_to_array(image) image = np.expand_dims(image, axis=0) image = image / 255.0 # Normalize prob = model.predict(image)[0][0] label = "Fake" if prob > 0.5 else "Real" confidence = round(float(prob if prob > 0.5 else 1 - prob), 3) return f"{label} ({confidence})" # Gradio UI iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Text(), title="Deepfake Detection (Xception Model)" ) iface.launch()