import gradio as gr import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.applications.xception import preprocess_input from PIL import Image from huggingface_hub import hf_hub_download # Download and load the model model_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/cv_GP", filename="xception_model.h5") model = load_model(model_path) # Inference function def predict(image): image = image.resize((299, 299)) # Resize to match model input image = img_to_array(image) # Convert to numpy array image = np.expand_dims(image, axis=0) # Add batch dimension image = preprocess_input(image) # Apply Xception preprocessing (important fix!) prob = model.predict(image)[0][0] # Based on training: label 0 = Fake, label 1 = Real label = "Real" if prob > 0.5 else "Fake" confidence = round(float(prob if prob > 0.5 else 1 - prob), 3) return f"{label} ({confidence * 100:.1f}%)" # Gradio interface iface = gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Text(), title="Deepfake Detection (Xception Model)" ) iface.launch()