Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
ce634b2
1
Parent(s):
e391bd4
Acceleration on the refine_foreground.
Browse files- app.py +90 -25
- app_local.py +90 -25
app.py
CHANGED
|
@@ -9,6 +9,7 @@ from glob import glob
|
|
| 9 |
from typing import Tuple
|
| 10 |
|
| 11 |
from PIL import Image
|
|
|
|
| 12 |
from torchvision import transforms
|
| 13 |
|
| 14 |
import requests
|
|
@@ -27,39 +28,103 @@ torch.jit.script = lambda f: f
|
|
| 27 |
|
| 28 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 29 |
|
| 30 |
-
### image_proc.py
|
| 31 |
-
def refine_foreground(image, mask, r=90):
|
| 32 |
-
if mask.size != image.size:
|
| 33 |
-
mask = mask.resize(image.size)
|
| 34 |
-
image = np.array(image) / 255.0
|
| 35 |
-
mask = np.array(mask) / 255.0
|
| 36 |
-
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
|
| 37 |
-
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
| 38 |
-
return image_masked
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
| 42 |
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
| 43 |
alpha = alpha[:, :, None]
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
|
|
|
| 48 |
|
| 49 |
-
|
| 50 |
-
if isinstance(image, Image.Image):
|
| 51 |
-
image = np.array(image) / 255.0
|
| 52 |
-
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
|
| 65 |
class ImagePreprocessor():
|
|
@@ -167,7 +232,7 @@ def predict(images, resolution, weights_file):
|
|
| 167 |
|
| 168 |
# Show Results
|
| 169 |
pred_pil = transforms.ToPILImage()(pred)
|
| 170 |
-
image_masked = refine_foreground(image, pred_pil)
|
| 171 |
image_masked.putalpha(pred_pil.resize(image.size))
|
| 172 |
|
| 173 |
torch.cuda.empty_cache()
|
|
|
|
| 9 |
from typing import Tuple
|
| 10 |
|
| 11 |
from PIL import Image
|
| 12 |
+
import torch
|
| 13 |
from torchvision import transforms
|
| 14 |
|
| 15 |
import requests
|
|
|
|
| 28 |
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
+
## CPU version refinement
|
| 33 |
+
def FB_blur_fusion_foreground_estimator_cpu(image, FG, B, alpha, r=90):
|
| 34 |
+
if isinstance(image, Image.Image):
|
| 35 |
+
image = np.array(image) / 255.0
|
| 36 |
+
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
| 37 |
+
|
| 38 |
+
blurred_FGA = cv2.blur(FG * alpha, (r, r))
|
| 39 |
+
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5)
|
| 40 |
+
|
| 41 |
+
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
| 42 |
+
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 43 |
+
FG = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B)
|
| 44 |
+
FG = np.clip(FG, 0, 1)
|
| 45 |
+
return FG, blurred_B
|
| 46 |
|
| 47 |
+
|
| 48 |
+
def FB_blur_fusion_foreground_estimator_cpu_2(image, alpha, r=90):
|
| 49 |
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
| 50 |
alpha = alpha[:, :, None]
|
| 51 |
+
FG, blur_B = FB_blur_fusion_foreground_estimator_cpu(image, image, image, alpha, r)
|
| 52 |
+
return FB_blur_fusion_foreground_estimator_cpu(image, FG, blur_B, alpha, r=6)[0]
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
## GPU version refinement
|
| 56 |
+
def mean_blur(x, kernel_size):
|
| 57 |
+
"""
|
| 58 |
+
equivalent to cv.blur
|
| 59 |
+
x: [B, C, H, W]
|
| 60 |
+
"""
|
| 61 |
+
if kernel_size % 2 == 0:
|
| 62 |
+
pad_l = kernel_size // 2 - 1
|
| 63 |
+
pad_r = kernel_size // 2
|
| 64 |
+
pad_t = kernel_size // 2 - 1
|
| 65 |
+
pad_b = kernel_size // 2
|
| 66 |
+
else:
|
| 67 |
+
pad_l = pad_r = pad_t = pad_b = kernel_size // 2
|
| 68 |
|
| 69 |
+
x_padded = torch.nn.functional.pad(x, (pad_l, pad_r, pad_t, pad_b), mode='replicate')
|
| 70 |
|
| 71 |
+
return torch.nn.functional.avg_pool2d(x_padded, kernel_size=(kernel_size, kernel_size), stride=1, count_include_pad=False)
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
def FB_blur_fusion_foreground_estimator_gpu(image, FG, B, alpha, r=90):
|
| 74 |
+
as_dtype = lambda x, dtype: x.to(dtype) if x.dtype != dtype else x
|
| 75 |
|
| 76 |
+
input_dtype = image.dtype
|
| 77 |
+
# convert image to float to avoid overflow
|
| 78 |
+
image = as_dtype(image, torch.float32)
|
| 79 |
+
FG = as_dtype(FG, torch.float32)
|
| 80 |
+
B = as_dtype(B, torch.float32)
|
| 81 |
+
alpha = as_dtype(alpha, torch.float32)
|
| 82 |
+
|
| 83 |
+
blurred_alpha = mean_blur(alpha, kernel_size=r)
|
| 84 |
+
|
| 85 |
+
blurred_FGA = mean_blur(FG * alpha, kernel_size=r)
|
| 86 |
+
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5)
|
| 87 |
+
|
| 88 |
+
blurred_B1A = mean_blur(B * (1 - alpha), kernel_size=r)
|
| 89 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 90 |
+
|
| 91 |
+
FG_output = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B)
|
| 92 |
+
FG_output = torch.clamp(FG_output, 0, 1)
|
| 93 |
+
|
| 94 |
+
return as_dtype(FG_output, input_dtype), as_dtype(blurred_B, input_dtype)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def FB_blur_fusion_foreground_estimator_gpu_2(image, alpha, r=90):
|
| 98 |
+
# Thanks to the source: https://github.com/ZhengPeng7/BiRefNet/issues/226#issuecomment-3016433728
|
| 99 |
+
FG, blur_B = FB_blur_fusion_foreground_estimator_gpu(image, image, image, alpha, r)
|
| 100 |
+
return FB_blur_fusion_foreground_estimator_gpu(image, FG, blur_B, alpha, r=6)[0]
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def refine_foreground(image, mask, r=90, device='cuda'):
|
| 104 |
+
"""both image and mask are in range of [0, 1]"""
|
| 105 |
+
if mask.size != image.size:
|
| 106 |
+
mask = mask.resize(image.size)
|
| 107 |
+
|
| 108 |
+
if device == 'cuda':
|
| 109 |
+
image = transforms.functional.to_tensor(image).float().cuda()
|
| 110 |
+
mask = transforms.functional.to_tensor(mask).float().cuda()
|
| 111 |
+
image = image.unsqueeze(0)
|
| 112 |
+
mask = mask.unsqueeze(0)
|
| 113 |
+
|
| 114 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_gpu_2(image, mask, r=r)
|
| 115 |
+
|
| 116 |
+
estimated_foreground = estimated_foreground.squeeze()
|
| 117 |
+
estimated_foreground = (estimated_foreground.mul(255.0)).to(torch.uint8)
|
| 118 |
+
estimated_foreground = estimated_foreground.permute(1, 2, 0).contiguous().cpu().numpy().astype(np.uint8)
|
| 119 |
+
else:
|
| 120 |
+
image = np.array(image, dtype=np.float32) / 255.0
|
| 121 |
+
mask = np.array(mask, dtype=np.float32) / 255.0
|
| 122 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_cpu_2(image, mask, r=r)
|
| 123 |
+
estimated_foreground = (estimated_foreground * 255.0).astype(np.uint8)
|
| 124 |
+
|
| 125 |
+
estimated_foreground = Image.fromarray(np.ascontiguousarray(estimated_foreground))
|
| 126 |
+
|
| 127 |
+
return estimated_foreground
|
| 128 |
|
| 129 |
|
| 130 |
class ImagePreprocessor():
|
|
|
|
| 232 |
|
| 233 |
# Show Results
|
| 234 |
pred_pil = transforms.ToPILImage()(pred)
|
| 235 |
+
image_masked = refine_foreground(image, pred_pil, device=device)
|
| 236 |
image_masked.putalpha(pred_pil.resize(image.size))
|
| 237 |
|
| 238 |
torch.cuda.empty_cache()
|
app_local.py
CHANGED
|
@@ -11,6 +11,7 @@ from typing import Tuple
|
|
| 11 |
from PIL import Image
|
| 12 |
# from gradio_imageslider import ImageSlider
|
| 13 |
import transformers
|
|
|
|
| 14 |
from torchvision import transforms
|
| 15 |
|
| 16 |
import requests
|
|
@@ -23,39 +24,103 @@ torch.set_float32_matmul_precision('high')
|
|
| 23 |
|
| 24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
|
| 26 |
-
### image_proc.py
|
| 27 |
-
def refine_foreground(image, mask, r=90):
|
| 28 |
-
if mask.size != image.size:
|
| 29 |
-
mask = mask.resize(image.size)
|
| 30 |
-
image = np.array(image) / 255.0
|
| 31 |
-
mask = np.array(mask) / 255.0
|
| 32 |
-
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
|
| 33 |
-
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
| 34 |
-
return image_masked
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
| 39 |
alpha = alpha[:, :, None]
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
if isinstance(image, Image.Image):
|
| 47 |
-
image = np.array(image) / 255.0
|
| 48 |
-
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
class ImagePreprocessor():
|
|
@@ -163,7 +228,7 @@ def predict(images, resolution, weights_file):
|
|
| 163 |
|
| 164 |
# Show Results
|
| 165 |
pred_pil = transforms.ToPILImage()(pred)
|
| 166 |
-
image_masked = refine_foreground(image, pred_pil)
|
| 167 |
image_masked.putalpha(pred_pil.resize(image.size))
|
| 168 |
|
| 169 |
torch.cuda.empty_cache()
|
|
|
|
| 11 |
from PIL import Image
|
| 12 |
# from gradio_imageslider import ImageSlider
|
| 13 |
import transformers
|
| 14 |
+
import torch
|
| 15 |
from torchvision import transforms
|
| 16 |
|
| 17 |
import requests
|
|
|
|
| 24 |
|
| 25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
## CPU version refinement
|
| 29 |
+
def FB_blur_fusion_foreground_estimator_cpu(image, FG, B, alpha, r=90):
|
| 30 |
+
if isinstance(image, Image.Image):
|
| 31 |
+
image = np.array(image) / 255.0
|
| 32 |
+
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
| 33 |
+
|
| 34 |
+
blurred_FGA = cv2.blur(FG * alpha, (r, r))
|
| 35 |
+
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5)
|
| 36 |
+
|
| 37 |
+
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
| 38 |
+
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 39 |
+
FG = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B)
|
| 40 |
+
FG = np.clip(FG, 0, 1)
|
| 41 |
+
return FG, blurred_B
|
| 42 |
|
| 43 |
+
|
| 44 |
+
def FB_blur_fusion_foreground_estimator_cpu_2(image, alpha, r=90):
|
| 45 |
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
| 46 |
alpha = alpha[:, :, None]
|
| 47 |
+
FG, blur_B = FB_blur_fusion_foreground_estimator_cpu(image, image, image, alpha, r)
|
| 48 |
+
return FB_blur_fusion_foreground_estimator_cpu(image, FG, blur_B, alpha, r=6)[0]
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
## GPU version refinement
|
| 52 |
+
def mean_blur(x, kernel_size):
|
| 53 |
+
"""
|
| 54 |
+
equivalent to cv.blur
|
| 55 |
+
x: [B, C, H, W]
|
| 56 |
+
"""
|
| 57 |
+
if kernel_size % 2 == 0:
|
| 58 |
+
pad_l = kernel_size // 2 - 1
|
| 59 |
+
pad_r = kernel_size // 2
|
| 60 |
+
pad_t = kernel_size // 2 - 1
|
| 61 |
+
pad_b = kernel_size // 2
|
| 62 |
+
else:
|
| 63 |
+
pad_l = pad_r = pad_t = pad_b = kernel_size // 2
|
| 64 |
|
| 65 |
+
x_padded = torch.nn.functional.pad(x, (pad_l, pad_r, pad_t, pad_b), mode='replicate')
|
| 66 |
|
| 67 |
+
return torch.nn.functional.avg_pool2d(x_padded, kernel_size=(kernel_size, kernel_size), stride=1, count_include_pad=False)
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
def FB_blur_fusion_foreground_estimator_gpu(image, FG, B, alpha, r=90):
|
| 70 |
+
as_dtype = lambda x, dtype: x.to(dtype) if x.dtype != dtype else x
|
| 71 |
|
| 72 |
+
input_dtype = image.dtype
|
| 73 |
+
# convert image to float to avoid overflow
|
| 74 |
+
image = as_dtype(image, torch.float32)
|
| 75 |
+
FG = as_dtype(FG, torch.float32)
|
| 76 |
+
B = as_dtype(B, torch.float32)
|
| 77 |
+
alpha = as_dtype(alpha, torch.float32)
|
| 78 |
+
|
| 79 |
+
blurred_alpha = mean_blur(alpha, kernel_size=r)
|
| 80 |
+
|
| 81 |
+
blurred_FGA = mean_blur(FG * alpha, kernel_size=r)
|
| 82 |
+
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5)
|
| 83 |
+
|
| 84 |
+
blurred_B1A = mean_blur(B * (1 - alpha), kernel_size=r)
|
| 85 |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
| 86 |
+
|
| 87 |
+
FG_output = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B)
|
| 88 |
+
FG_output = torch.clamp(FG_output, 0, 1)
|
| 89 |
+
|
| 90 |
+
return as_dtype(FG_output, input_dtype), as_dtype(blurred_B, input_dtype)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def FB_blur_fusion_foreground_estimator_gpu_2(image, alpha, r=90):
|
| 94 |
+
# Thanks to the source: https://github.com/ZhengPeng7/BiRefNet/issues/226#issuecomment-3016433728
|
| 95 |
+
FG, blur_B = FB_blur_fusion_foreground_estimator_gpu(image, image, image, alpha, r)
|
| 96 |
+
return FB_blur_fusion_foreground_estimator_gpu(image, FG, blur_B, alpha, r=6)[0]
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def refine_foreground(image, mask, r=90, device='cuda'):
|
| 100 |
+
"""both image and mask are in range of [0, 1]"""
|
| 101 |
+
if mask.size != image.size:
|
| 102 |
+
mask = mask.resize(image.size)
|
| 103 |
+
|
| 104 |
+
if device == 'cuda':
|
| 105 |
+
image = transforms.functional.to_tensor(image).float().cuda()
|
| 106 |
+
mask = transforms.functional.to_tensor(mask).float().cuda()
|
| 107 |
+
image = image.unsqueeze(0)
|
| 108 |
+
mask = mask.unsqueeze(0)
|
| 109 |
+
|
| 110 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_gpu_2(image, mask, r=r)
|
| 111 |
+
|
| 112 |
+
estimated_foreground = estimated_foreground.squeeze()
|
| 113 |
+
estimated_foreground = (estimated_foreground.mul(255.0)).to(torch.uint8)
|
| 114 |
+
estimated_foreground = estimated_foreground.permute(1, 2, 0).contiguous().cpu().numpy().astype(np.uint8)
|
| 115 |
+
else:
|
| 116 |
+
image = np.array(image, dtype=np.float32) / 255.0
|
| 117 |
+
mask = np.array(mask, dtype=np.float32) / 255.0
|
| 118 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_cpu_2(image, mask, r=r)
|
| 119 |
+
estimated_foreground = (estimated_foreground * 255.0).astype(np.uint8)
|
| 120 |
+
|
| 121 |
+
estimated_foreground = Image.fromarray(np.ascontiguousarray(estimated_foreground))
|
| 122 |
+
|
| 123 |
+
return estimated_foreground
|
| 124 |
|
| 125 |
|
| 126 |
class ImagePreprocessor():
|
|
|
|
| 228 |
|
| 229 |
# Show Results
|
| 230 |
pred_pil = transforms.ToPILImage()(pred)
|
| 231 |
+
image_masked = refine_foreground(image, pred_pil, device=device)
|
| 232 |
image_masked.putalpha(pred_pil.resize(image.size))
|
| 233 |
|
| 234 |
torch.cuda.empty_cache()
|