import os import cv2 import numpy as np import torch import gradio as gr import spaces from glob import glob from typing import Tuple from PIL import Image from torchvision import transforms import requests from io import BytesIO import zipfile # Fix the HF space permission error when using from_pretrained(..., trust_remote_code=True) os.environ["HF_MODULES_CACHE"] = os.path.join("/tmp/hf_cache", "modules") import transformers transformers.utils.move_cache() torch.set_float32_matmul_precision('high') torch.jit.script = lambda f: f device = "cuda" if torch.cuda.is_available() else "cpu" ### image_proc.py def refine_foreground(image, mask, r=90): if mask.size != image.size: mask = mask.resize(image.size) image = np.array(image) / 255.0 mask = np.array(mask) / 255.0 estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) return image_masked def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation alpha = alpha[:, :, None] F, blur_B = FB_blur_fusion_foreground_estimator( image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): if isinstance(image, Image.Image): image = np.array(image) / 255.0 blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] blurred_FA = cv2.blur(F * alpha, (r, r)) blurred_F = blurred_FA / (blurred_alpha + 1e-5) blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) F = blurred_F + alpha * \ (image - alpha * blurred_F - (1 - alpha) * blurred_B) F = np.clip(F, 0, 1) return F, blurred_B class ImagePreprocessor(): def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: # Input resolution is on WxH. self.transform_image = transforms.Compose([ transforms.Resize(resolution[::-1]), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image usage_to_weights_file = { 'General': 'BiRefNet', 'General-HR': 'BiRefNet_HR', 'Matting-HR': 'BiRefNet_HR-matting', 'Matting': 'BiRefNet-matting', 'Portrait': 'BiRefNet-portrait', 'General-reso_512': 'BiRefNet_512x512', 'General-Lite': 'BiRefNet_lite', 'General-Lite-2K': 'BiRefNet_lite-2K', 'Anime-Lite': 'BiRefNet_lite-Anime', 'DIS': 'BiRefNet-DIS5K', 'HRSOD': 'BiRefNet-HRSOD', 'COD': 'BiRefNet-COD', 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', 'General-legacy': 'BiRefNet-legacy', 'General-dynamic': 'BiRefNet_dynamic', } birefnet = transformers.AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) birefnet.to(device) birefnet.eval(); birefnet.half() @spaces.GPU def predict(images, resolution, weights_file): assert (images is not None), 'AssertionError: images cannot be None.' global birefnet # Load BiRefNet with chosen weights _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) print('Using weights: {}.'.format(_weights_file)) birefnet = transformers.AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) birefnet.to(device) birefnet.eval(); birefnet.half() try: resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] except: if weights_file in ['General-HR', 'Matting-HR']: resolution = (2048, 2048) elif weights_file in ['General-Lite-2K']: resolution = (2560, 1440) elif weights_file in ['General-reso_512']: resolution = (512, 512) else: if weights_file in ['General-dynamic']: resolution = None print('Using the original size (div by 32) for inference.') else: resolution = (1024, 1024) print('Invalid resolution input. Automatically changed to 1024x1024 / 2048x2048 / 2560x1440.') if isinstance(images, list): # For tab_batch save_paths = [] save_dir = 'preds-BiRefNet' if not os.path.exists(save_dir): os.makedirs(save_dir) tab_is_batch = True else: images = [images] tab_is_batch = False for idx_image, image_src in enumerate(images): if isinstance(image_src, str): if os.path.isfile(image_src): image_ori = Image.open(image_src) else: response = requests.get(image_src) image_data = BytesIO(response.content) image_ori = Image.open(image_data) else: image_ori = Image.fromarray(image_src) image = image_ori.convert('RGB') # Preprocess the image if resolution is None: resolution_div_by_32 = [int(int(reso)//32*32) for reso in image.size] if resolution_div_by_32 != resolution: resolution = resolution_div_by_32 image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) image_proc = image_preprocessor.proc(image) image_proc = image_proc.unsqueeze(0) # Prediction with torch.no_grad(): preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu() pred = preds[0].squeeze() # Show Results pred_pil = transforms.ToPILImage()(pred) image_masked = refine_foreground(image, pred_pil) image_masked.putalpha(pred_pil.resize(image.size)) torch.cuda.empty_cache() if tab_is_batch: save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0])) image_masked.save(save_file_path) save_paths.append(save_file_path) if tab_is_batch: zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir)) with zipfile.ZipFile(zip_file_path, 'w') as zipf: for file in save_paths: zipf.write(file, os.path.basename(file)) return save_paths, zip_file_path else: return (image_masked, image_ori) examples = [[_] for _ in glob('examples/*')][:] # Add the option of resolution in a text box. for idx_example, example in enumerate(examples): if 'My_' in example[0]: example_resolution = '2048x2048' else: example_resolution = '1024x1024' examples[idx_example].append(example_resolution) examples.append(examples[-1].copy()) examples[-1][1] = '512x512' examples_url = [ ['https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg'], ] for idx_example_url, example_url in enumerate(examples_url): examples_url[idx_example_url].append('1024x1024') descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)' ' The resolution used in our training was `1024x1024`, which is the suggested resolution to obtain good results! `2048x2048` is suggested for BiRefNet_HR.\n' ' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n' ' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.') tab_image = gr.Interface( fn=predict, inputs=[ gr.Image(label='Upload an image'), gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") ], outputs=gr.ImageSlider(label="BiRefNet's prediction", type="pil", format='png'), examples=examples, api_name="image", description=descriptions, ) tab_text = gr.Interface( fn=predict, inputs=[ gr.Textbox(label="Paste an image URL"), gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") ], outputs=gr.ImageSlider(label="BiRefNet's prediction", type="pil", format='png'), examples=examples_url, api_name="URL", description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!', ) tab_batch = gr.Interface( fn=predict, inputs=[ gr.File(label="Upload multiple images", type="filepath", file_count="multiple"), gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") ], outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")], api_name="batch", description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!', ) demo = gr.TabbedInterface( [tab_image, tab_text, tab_batch], ['image', 'URL', 'batch'], title="Official Online Demo of BiRefNet", ) if __name__ == "__main__": demo.launch(debug=True)