Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,063 Bytes
929e531 1f3850d 64e3308 1f3850d 7dc91c2 c597a5b b7ba72c 7dc91c2 c597a5b 7dc91c2 15b0565 7dc91c2 15b0565 7dc91c2 15b0565 7dc91c2 15b0565 7dc91c2 15b0565 7dc91c2 15b0565 7dc91c2 15b0565 ca09329 7dc91c2 15b0565 7dc91c2 15b0565 ca09329 15b0565 1f3850d c6e16ba 1f3850d 01f9743 1f3850d 01f9743 1f3850d 01f9743 1f3850d 01f9743 1f3850d 01f9743 1f3850d 01f9743 188dd85 1f3850d 01f9743 ca09329 78169b4 28a5503 6dd8635 78169b4 929e531 01f9743 c597a5b f9879d7 c597a5b 01f9743 1f3850d 01f9743 1f3850d 82c94d8 1f3850d 188dd85 4b2b3d0 1f3850d 28a5503 4b2b3d0 c597a5b 28a5503 929e531 1f3850d 929e531 1f3850d 01f9743 1f3850d f9879d7 1f3850d 4e3fad4 1f3850d 01f9743 1f3850d 01f9743 1f3850d 01f9743 1f3850d 188dd85 f9879d7 2ae4165 7dc91c2 188dd85 1f3850d 929e531 1f3850d 9328543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
# dreamon_app.py
## this app is built based on https://huggingface.co/spaces/multimodalart/Dream/blob/main/app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional, Any, Iterable # Added Any
import torch.distributions as dists # Added import
import traceback # For better error printing
import random
import gzip
import json
import subprocess
import time
from multiprocessing import Process, Queue
import io
import sys
def unsafe_execute(prompt, completion, suffix, test_case, timeout=3):
check_program = (prompt
+ completion
+ suffix
+ "\n\n"
+ test_case
)
# 重定向标准输出和标准错误
old_stdout = sys.stdout
old_stderr = sys.stderr
new_stdout = io.StringIO()
new_stderr = io.StringIO()
sys.stdout = new_stdout
sys.stderr = new_stderr
try:
# 执行代码
exec(check_program, {})
output = new_stdout.getvalue().strip()
error_output = new_stderr.getvalue().strip()
except Exception as e:
# 捕获异常并记录堆栈跟踪
output = ''
error_output = str(e)
finally:
# 恢复标准输出和标准错误
sys.stdout = old_stdout
sys.stderr = old_stderr
# 处理输出
if output and not error_output:
return output
elif not output and not error_output:
return 'Pass all test cases!'
else:
error_lines = error_output.splitlines()
if error_lines:
return f'Error: {error_lines[-1]}'
else:
return 'Error: Unknown error'
return f'Error: {error_output}'
def read_problems() -> Dict[str, Dict]:
benchmark_file = "HumanEval-SingleLineInfilling.jsonl.gz"
return {task["task_id"]: task for task in stream_jsonl(benchmark_file)}
def stream_jsonl(filename: str) -> Iterable[Dict]:
"""
Parses each jsonl line and yields it as a dictionary
"""
if filename.endswith(".gz"):
with open(filename, "rb") as gzfp:
with gzip.open(gzfp, "rt") as fp:
for line in fp:
if any(not x.isspace() for x in line):
yield json.loads(line)
else:
with open(filename, "r") as fp:
for line in fp:
if any(not x.isspace() for x in line):
yield json.loads(line)
problems = read_problems()
class HFTokenizerWrapper():
def __init__(self, hf_tokenizer: str) -> None:
self.tokenizer = hf_tokenizer
self.bos_id = self.tokenizer.bos_token_id
self.eos_id = self.tokenizer.eos_token_id
self.mask_id = self.tokenizer.mask_token_id
def encode(self, s: str, add_bos: bool = False, add_eos: bool = False):
tokens = [self.bos_id] * add_bos + self.tokenizer.encode(s) + [self.eos_id] * add_eos
return tokens
def decode(self, tokens: List[int], **kwargs):
return self.tokenizer.decode(tokens, **kwargs)
def get_token_offsets(
self, text: str, tokens: Optional[List[int]] = None
) -> Tuple[List[str], List[int]]:
"""Return the offsets of the tokens in the original text. Only used for evaluation."""
pass
def convert_tokens_to_ids(self, tokens):
return self.tokenizer.convert_tokens_to_ids(tokens)
# --- START: Copied Helper functions from generation_utils.py ---
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
def top_p_logits(logits, top_p=None):
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
return logits
def top_k_logits(logits, top_k=None):
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
return logits
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
if temperature > 0:
logits = logits / temperature
if top_p is not None and top_p < 1:
logits = top_p_logits(logits, top_p)
if top_k is not None and top_k > 0:
logits = top_k_logits(logits, top_k)
probs = torch.softmax(logits, dim=-1)
if temperature > 0:
try:
x0 = dists.Categorical(probs=probs).sample()
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except:
confidence, x0 = probs.max(dim=-1)
else:
confidence, x0 = probs.max(dim=-1)
if margin_confidence:
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
# Extract top1 and top2 probabilities
top1_probs = sorted_probs[:, 0]
top2_probs = sorted_probs[:, 1]
# Calculate confidence as top1 - top2
confidence = top1_probs - top2_probs
if neg_entropy:
epsilon = 1e-10
log_probs = torch.log(probs + epsilon)
confidence = torch.sum(probs * log_probs, dim=-1)
return confidence, x0
# --- END: Copied Helper functions ---
# --- Model Loading and Constants ---
# Load model configuration to get special token IDs
model_path = "Dream-org/DreamOn-v0-7B"
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer = HFTokenizerWrapper(tokenizer)
print("Loading model...")
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32,
trust_remote_code=True,
attn_implementation="sdpa" # Explicitly request SDPA
)
model = model.to(device).eval()
print("Model loaded.")
MASK_TOKEN = '<|mask|>'
MASK_ID = tokenizer.mask_id
EOS_ID = tokenizer.eos_id
try:
EXPAND_ID = tokenizer.convert_tokens_to_ids('<|expand|>')
except:
raise ValueError("Cannot determine EXPAND_ID. Check model's tokenizer configuration")
if MASK_ID is None:
raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.")
SPECIAL_TOKEN_IDS = {EOS_ID, MASK_ID}
try:
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
SPECIAL_TOKEN_IDS.add(IM_START_ID)
SPECIAL_TOKEN_IDS.add(IM_END_ID)
except KeyError:
print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.")
IM_START_ID = None
IM_END_ID = None
# --- Helper Functions ---
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
""" Parses word constraints. """
constraints = {}
if not constraints_text: return constraints
parts = constraints_text.split(',')
for part in parts:
part = part.strip()
if ':' not in part: continue
pos_str, word = part.split(':', 1)
try:
pos = int(pos_str.strip())
word = word.strip()
token_ids = []
if word:
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
if token_ids and pos >= 0: constraints[pos] = token_ids
elif not token_ids and word: print(f"Warning: Could not tokenize constraint word '{word}'")
except ValueError: print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
except Exception as e: print(f"Warning: Error processing constraint '{part}': {e}")
return constraints
# Removed format_chat_history as the state will now be in the correct format
def apply_constraints_to_state(
x: torch.Tensor,
prompt_length: int,
total_length: int,
parsed_constraints: Dict[int, List[int]],
current_step: Optional[int] = None
) -> torch.Tensor:
""" Applies constraints directly to the state tensor `x`. """
modified_x = x.clone()
for rel_pos, word_token_ids in parsed_constraints.items():
abs_start_pos = prompt_length + rel_pos
abs_end_pos = abs_start_pos + len(word_token_ids)
if abs_start_pos < total_length and abs_end_pos <= total_length:
try:
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
except IndexError: print(f"Warning (Step {current_step}): Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.")
except Exception as e: print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}")
return modified_x
# --- Core Generation Logic with Live Visualization ---
@spaces.GPU
@torch.no_grad()
def infilling_dream(
prefix: str,
suffix: str,
start_gen_len: int,
max_gen_len: int,
expand_budget: int,
temperature: float,
top_p: Optional[float],
top_k: Optional[int],
alg: str,
alg_temp: Optional[float],
visualization_delay: float,
delete_righthand_eos: bool,
task_id: str
) -> List[Tuple[str, str]]:
# ------1. Prepare the input for infilling -----------------
prefix = prefix
suffix = suffix
prefix = tokenizer.encode(prefix, add_bos = True, add_eos = False)
prefix_len = len(prefix)
suffix = tokenizer.encode(suffix, add_bos = False, add_eos = True)
input_ids = prefix + [MASK_ID] * start_gen_len + suffix
input_ids = torch.LongTensor([input_ids]).to(device)
max_tokens = input_ids.shape[1] + max_gen_len
num_generation_tokens = start_gen_len
cur_generation_window_length = input_ids.shape[1] - start_gen_len + num_generation_tokens
x = F.pad(input_ids, (0, max_tokens - input_ids.shape[1]), value = MASK_ID)
# ------ Visualization Setup
initial_generated_tokens = input_ids[0, prefix_len: prefix_len + num_generation_tokens]
#yield vis_data_initial
yield tokenizer.decode(initial_generated_tokens.tolist()), ''
time.sleep(visualization_delay)
# ----2. Step by Step Infilling ----------------------------------------
for i in range(4 * max_gen_len):
cur_generation_window_length = input_ids.shape[1] - start_gen_len + num_generation_tokens
attention_mask = torch.ones([input_ids.shape[0], cur_generation_window_length], dtype = torch.int16).to(input_ids.device)
attention_mask = F.pad(attention_mask, (0, max_tokens - attention_mask.shape[1]), value = 0)
mask_index = (x == MASK_ID) & (attention_mask == 1)
if torch.all(~mask_index[:,:cur_generation_window_length]):
break
tok_idx = attention_mask.long().cumsum(-1) - 1
tok_idx.masked_fill_(attention_mask == 0, 1)
attention_mask = torch.logical_and(
attention_mask.unsqueeze(1).unsqueeze(-2),
attention_mask.unsqueeze(1).unsqueeze(-1),
)
output = model(x, attention_mask, tok_idx)
logits = output.logits
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
logits = logits[mask_index]
## block the logit for expansion when token budget is all used
if cur_generation_window_length == max_tokens or expand_budget == 0:
logits[:,EXPAND_ID] -= 1e9
if alg == 'maskgit_plus':
confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k)
elif alg == 'topk_margin':
confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k, margin_confidence=True)
elif alg == 'entropy':
confidence, x0 = sample_tokens(logits, temperature=temperature, top_p=top_p, top_k=top_k, neg_entropy=True)
else:
raise RuntimeError(f"Unknown alg: {alg}")
#num_mask_token = mask_index.sum()
#number_transfer_tokens = int(num_mask_token * (1 - s / t)) if i < steps - 1 else num_mask_token
number_transfer_tokens = 1
if number_transfer_tokens > 0:
if alg_temp is None or alg_temp == 0:
_, transfer_index = torch.topk(confidence, number_transfer_tokens)
else:
confidence = confidence / alg_temp
confidence = F.softmax(confidence, dim=-1)
transfer_index = torch.multinomial(confidence, num_samples=number_transfer_tokens)
x0_ = torch.zeros_like(x0, device=device, dtype=torch.long) + MASK_ID
x0_[transfer_index] = x0[transfer_index].clone()
x[mask_index] = x0_
# Only process if batch size is 1
if delete_righthand_eos:
if x.shape[0] != 1:
raise NotImplementedError
x_seq = x[0] # Flatten to 1D: shape [seq_len]
# Find indices where EOS occurs
eos_indices = (x_seq == EOS_ID).nonzero(as_tuple=True)
if len(eos_indices[0]) > 0:
# Get the first occurrence of EOS
# mask indices
first_eos_idx = eos_indices[0][0].item()
position_mask = torch.arange(x_seq.size(0), device=x.device) >= first_eos_idx
replace_mask = position_mask & mask_index[0]
# Set all tokens after EOS to eos_id
x_seq.masked_fill_(replace_mask, EOS_ID)
# # Reshape back to original shape (unsqueeze)
x = x_seq.unsqueeze(0)
## Visualize Denoise Step
cur_generated_tokens = x[0, prefix_len: prefix_len + num_generation_tokens]
cur_tokens = tokenizer.decode(cur_generated_tokens.tolist())
## replace all <|endoftext|> with <|delete|>
cur_tokens = cur_tokens.replace("<|endoftext|>", "<|delete|>")
yield cur_tokens, ''
time.sleep(visualization_delay)
# Expansion Step: Check for expand_id and replace with two mask tokens
expand_indices = (x[0] == EXPAND_ID).nonzero(as_tuple=False).squeeze(1)
if expand_indices.numel() > 0:
# Process from right to left to prevent shifting issues
for idx in sorted(expand_indices.tolist(), reverse=True):
x = torch.cat((
x[:, :idx],
torch.tensor([[MASK_ID, MASK_ID]], device=x.device),
x[:, idx + 1:]
), dim=1)
num_generation_tokens += 1
expand_budget -= 1
# Truncate back to max_tokens if needed
if x.shape[1] > max_tokens:
x = x[:, :max_tokens]
cur_generated_tokens = x[0, prefix_len: prefix_len + num_generation_tokens]
vis_data = []
# [Visualization formatting logic remains the same]
for j in range(num_generation_tokens):
current_tok_id = cur_generated_tokens[j].item()
try:
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False)
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception: display_token = f"[ID:{current_tok_id}]"
color = None; token_to_display = display_token
if current_tok_id == MASK_ID: color = "#444444"
else: color = "#6699CC"
if token_to_display: vis_data.append((token_to_display, color))
yield tokenizer.decode(cur_generated_tokens.tolist()), ''
#yield vis_data
time.sleep(visualization_delay)
## detele EOS tokens from middle
# Find indices where EOS occurs
eos_indices = ((x[0] == EOS_ID) & (mask_index[0] == 1)).nonzero(as_tuple=False).squeeze(1)
if eos_indices.numel() > 0:
for idx in sorted(eos_indices.tolist(), reverse=True):
x = torch.cat((
x[:, :idx],
x[:, idx + 1:],
torch.tensor([[MASK_ID]], device = x.device)
), dim = 1)
num_generation_tokens -= 1
cur_generated_tokens = x[0, prefix_len: prefix_len + num_generation_tokens]
yield tokenizer.decode(cur_generated_tokens.tolist()), ''
time.sleep(visualization_delay)
generated_code = tokenizer.decode(x[0, prefix_len: prefix_len + num_generation_tokens].tolist())
yield generated_code, ''
def get_example_input():
### this functions samples a case from humaneval-infilling as prefix and suffix
task_id = random.choice(list(problems.keys()))
problem = problems[task_id]
prefix, suffix = problem['prompt'], problem['suffix']
test_case = problem['test']
pattern = r'METADATA\s*=\s*\{.*?\}\n\n'
test_case= re.sub(pattern, '', test_case, flags=re.DOTALL).strip()
test_case = test_case.replace('def check(candidate):', 'def run_test():')
test_case = test_case.replace('candidate', problem['entry_point'])
test_case = test_case + '\n\nrun_test()'
return prefix, '', suffix, test_case, task_id, ''
def check_result(prompt, completion, suffix, test_case):
prompt = str(prompt) if prompt is not None else ""
completion = str(completion) if completion is not None else ""
suffix = str(suffix) if suffix is not None else ""
test_case = str(test_case) if test_case is not None else ""
print('prefix', prompt)
print('middle', completion)
print('suffix', suffix)
print('test', test_case)
result = unsafe_execute(prompt, completion, suffix, test_case)
return result
# --- Gradio UI ---
css = '''
.category-legend{display:none}
'''
def create_chatbot_demo():
with gr.Blocks(css=css) as demo:
gr.Markdown("# DreamOn: Diffusion Language Models For Code Infilling Beyond Fixed-size Canvas\nClick **Example Prompt** to obtain a prefix and suffix, then click **Generate** to create the code.\n\nClick **Run Test Cases** to verify the correctness of the code. You can also input your own test cases.")
gr.Markdown(
"[[Model Card](https://huggingface.co/Dream-org/DreamOn-v0-7B)] "
"[[Blog](https://hkunlp.github.io/blog/2025/dreamon/)]"
"[[Github](https://github.com/DreamLM/DreamOn)]"
)
with gr.Row():
sample_btn = gr.Button("Example Prompt")
generate_btn = gr.Button("Generate", variant="primary")
check_btn = gr.Button("Run Test Cases")
clear_btn = gr.Button("Clear")
with gr.Row():
with gr.Column():
# Prefix input
prefix_input = gr.Textbox(
label="Prefix Text",
placeholder="Enter the beginning of your text...",
lines=2
)
# Middle generation/visualization area
output_vis = gr.Textbox(
label="Generated Text (Middle)",
lines=2
)
# Suffix input
suffix_input = gr.Textbox(
label="Suffix Text",
placeholder="Enter the end of your text...",
lines=2
)
# Hidden Task ID input
task_id_input = gr.Textbox(
label="Task ID",
placeholder="Task ID will be stored here...",
visible=False
)
with gr.Column():
# Test Case input
test_case_input = gr.Textbox(
label="Test Case",
placeholder="Enter your test case here...",
lines=2
)
# Result of execution
result_output = gr.Textbox(
label="Result of Execution",
placeholder="Execution result will be shown here...",
lines=2
)
# Generation Settings
with gr.Accordion("Generation Settings"):
with gr.Row():
start_gen_len = gr.Slider(
minimum=4,
maximum=64,
value=4,
step=4,
label="Initial Generation Length"
)
max_gen_len = gr.Slider(
minimum=32,
maximum=64,
value=64,
step=8,
label="Maximum Generation Length"
)
with gr.Row():
expand_budget = gr.Slider(
minimum=0,
maximum=256,
value=64,
step=8,
label="Expansion Budget"
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="Temperature"
)
with gr.Row():
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P (0 disables)"
)
with gr.Row():
top_k = gr.Slider(
minimum=0,
maximum=200,
value=0,
step=5,
label="Top-K (0 disables)")
with gr.Row():
alg = gr.Radio(
choices=['maskgit_plus', 'topk_margin', 'entropy'],
value='entropy',
label="Generation Algorithm"
)
alg_temp = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="Algorithm Temperature"
)
with gr.Row():
visualization_delay = gr.Slider(
minimum=0.1,
maximum=3,
value=0.2,
step=0.1,
label="Visualization Delay (s)"
)
pad_delete_righthand = gr.Checkbox(
label="Delete all tokens on the righthand side of <|delete|>",
value=True
)
# Connect the UI elements
generation_inputs = [
prefix_input,
suffix_input,
start_gen_len,
max_gen_len,
expand_budget,
temperature,
top_p,
top_k,
alg,
alg_temp,
visualization_delay,
pad_delete_righthand,
task_id_input
]
test_inputs=[prefix_input, output_vis, suffix_input, test_case_input]
generate_btn.click(
fn=lambda: ("Waiting for ZeroGPU...", ''),
outputs=[output_vis, result_output],
show_progress="hidden"
).then(
fn=infilling_dream,
inputs=generation_inputs,
outputs=[output_vis, result_output],
show_progress="hidden"
)
clear_btn.click(
lambda: ("", "", "", "", "", ""), # Clear all inputs and outputs
inputs=[],
outputs=[prefix_input, suffix_input, output_vis, test_case_input, result_output, task_id_input],
queue=False
)
check_btn.click(
fn=check_result,
inputs=test_inputs,
outputs=[result_output],
queue=False
)
sample_btn.click(
fn=get_example_input,
outputs=[prefix_input, output_vis, suffix_input, test_case_input, task_id_input, result_output],
queue=False
)
return demo
# --- Launch ---
if __name__ == "__main__":
#test()
demo = create_chatbot_demo()
demo.queue().launch(debug=True) |