size-anything / app.py
Zitti123's picture
πŸš€ Initial deployment: Smart Object Size Estimator with AI-powered depth estimation and SAM segmentation
1924502
import gradio as gr
import numpy as np
import cv2
import torch
import pathlib
import sys
import json
from PIL import Image
from PIL.ExifTags import TAGS
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from typing import Dict, List, Tuple, Optional
import warnings
warnings.filterwarnings('ignore')
# Add the agent module to path
ROOT = pathlib.Path(__file__).resolve().parent
sys.path.insert(0, str(ROOT / "goal2" / "src"))
from agent import models, geometry, io
# Device configuration
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Camera presets for common devices
CAMERA_PRESETS = {
"iPhone 12/13/14 (Main Camera)": {"fx": 1840, "fy": 1840, "description": "26mm equivalent, f/1.6"},
"iPhone 12/13/14 (Ultra Wide)": {"fx": 920, "fy": 920, "description": "13mm equivalent, f/2.4"},
"Samsung Galaxy S21/S22": {"fx": 1950, "fy": 1950, "description": "26mm equivalent"},
"Google Pixel 6/7": {"fx": 1800, "fy": 1800, "description": "27mm equivalent"},
"Generic Smartphone": {"fx": 1500, "fy": 1500, "description": "Typical smartphone camera"},
"Custom": {"fx": 1500, "fy": 1500, "description": "Enter your own focal length values"}
}
class SizeEstimatorApp:
def __init__(self):
self.depth_net = None
self.mask_gen = None
self.current_image = None
self.current_depth = None
self.current_masks = None
self.reference_object = None
def detect_camera_from_exif(self, image_pil: Image.Image) -> Tuple[str, Dict]:
"""Try to detect camera type from EXIF data"""
try:
exif = image_pil._getexif()
if not exif:
return "Unknown", {}
# Extract relevant EXIF data
exif_data = {}
for tag_id, value in exif.items():
tag = TAGS.get(tag_id, tag_id)
exif_data[tag] = value
# Try to identify camera make/model
make = exif_data.get('Make', '').lower()
model = exif_data.get('Model', '').lower()
# Match against known camera presets
if 'apple' in make or 'iphone' in model:
if any(x in model for x in ['12', '13', '14']):
return "iPhone 12/13/14 (Main Camera)", exif_data
else:
return "Generic Smartphone", exif_data
elif 'samsung' in make:
return "Samsung Galaxy S21/S22", exif_data
elif 'google' in make or 'pixel' in model:
return "Google Pixel 6/7", exif_data
else:
return "Generic Smartphone", exif_data
except Exception as e:
print(f"EXIF detection failed: {e}")
return "Unknown", {}
def load_models(self):
"""Load the depth and segmentation models"""
if self.depth_net is None:
print("Loading Depth Anything V2...")
self.depth_net = models.load_depth(DEVICE)
if self.mask_gen is None:
print("Loading SAM...")
self.mask_gen = models.load_sam(DEVICE)
return "βœ… Models loaded successfully!"
def process_image(self, image: np.ndarray, camera_preset: str, fx_custom: float, fy_custom: float) -> Tuple[np.ndarray, str]:
"""Process uploaded image and generate depth + segmentation"""
try:
# Input validation
if image is None:
return None, "❌ No image provided. Please upload an image."
if len(image.shape) != 3 or image.shape[2] != 3:
return None, "❌ Invalid image format. Please upload a color image (RGB)."
# Check image size constraints
h, w = image.shape[:2]
if h < 100 or w < 100:
return None, "❌ Image too small. Please upload an image at least 100x100 pixels."
if h > 4000 or w > 4000:
status_msg = "⚠️ Large image detected. Resizing for processing...\n"
# Resize very large images
max_size = 2000
scale = min(max_size/w, max_size/h)
if scale < 1:
new_w, new_h = int(w * scale), int(h * scale)
image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_AREA)
status_msg += f"πŸ“ Resized from {w}Γ—{h} to {new_w}Γ—{new_h}\n"
else:
status_msg = ""
# Ensure models are loaded
if self.depth_net is None or self.mask_gen is None:
self.load_models()
# Store the original image
self.current_image = image.copy()
# Validate camera parameters
if camera_preset == "Custom":
if fx_custom <= 0 or fy_custom <= 0:
return None, "❌ Invalid focal length values. Must be greater than 0."
if fx_custom < 100 or fy_custom < 100 or fx_custom > 5000 or fy_custom > 5000:
return None, "❌ Focal length values seem unrealistic. Typical range: 100-5000 pixels."
fx, fy = fx_custom, fy_custom
else:
preset = CAMERA_PRESETS[camera_preset]
fx, fy = preset["fx"], preset["fy"]
# Generate depth and masks using the robust approach
depth, masks, processed_img = models.predict_depth_and_masks(
self.depth_net, self.mask_gen, image, DEVICE, approach="aligned"
)
# Validate results
if depth is None or len(depth.shape) != 2:
return None, "❌ Failed to generate depth map. Please try a different image."
if not masks or len(masks) == 0:
return None, "❌ No objects detected in the image. Try an image with clearer objects."
# Filter out very small masks (likely noise)
min_area = (image.shape[0] * image.shape[1]) * 0.001 # 0.1% of image area
filtered_masks = [m for m in masks if m['area'] > min_area]
if len(filtered_masks) == 0:
return None, "❌ No significant objects detected. Try an image with larger, clearer objects."
self.current_depth = depth
self.current_masks = filtered_masks
# Create visualization
vis_image = self.create_mask_visualization(processed_img, filtered_masks)
status = status_msg + f"βœ… Processed successfully! Found {len(filtered_masks)} objects.\n"
status += f"πŸ“· Camera: {camera_preset} (fx={fx:.0f}, fy={fy:.0f})\n"
status += f"πŸ–ΌοΈ Image size: {image.shape[1]}Γ—{image.shape[0]}\n"
if len(masks) > len(filtered_masks):
status += f"πŸ” Filtered out {len(masks) - len(filtered_masks)} small objects\n"
status += f"πŸ“ Ready for size estimation - select object number and known size below"
return vis_image, status
except Exception as e:
import traceback
error_details = traceback.format_exc()
print("Full error:", error_details) # For debugging
return None, f"❌ Error processing image: {str(e)}\nPlease try a different image."
def create_mask_visualization(self, image: np.ndarray, masks: List[Dict]) -> np.ndarray:
"""Create visualization with colored masks and labels"""
vis_img = image.copy()
# Sort masks by area (largest first)
sorted_masks = sorted(masks, key=lambda x: x['area'], reverse=True)
# Color each mask with different colors
colors = plt.cm.Set3(np.linspace(0, 1, len(sorted_masks)))
for i, mask_data in enumerate(sorted_masks):
mask = mask_data['segmentation']
color = colors[i][:3] # RGB values
# Apply colored overlay
colored_mask = np.zeros_like(vis_img)
colored_mask[mask] = [int(c * 255) for c in color]
vis_img = cv2.addWeighted(vis_img, 0.7, colored_mask, 0.3, 0)
# Add number label
y, x = np.where(mask)
if len(x) > 0 and len(y) > 0:
center_x, center_y = int(np.mean(x)), int(np.mean(y))
cv2.putText(vis_img, str(i+1), (center_x-10, center_y+5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (255, 255, 255), 2)
cv2.putText(vis_img, str(i+1), (center_x-10, center_y+5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 1)
return vis_img
def select_reference_object(self, mask_number: int, reference_size_cm: float, dimension: str) -> str:
"""Select a mask as reference object and specify its known size"""
try:
if self.current_masks is None:
return "❌ No image processed yet. Please upload and process an image first."
if mask_number < 1 or mask_number > len(self.current_masks):
return f"❌ Invalid mask number. Choose between 1 and {len(self.current_masks)}"
if reference_size_cm <= 0:
return "❌ Reference size must be greater than 0"
# Get the selected mask (convert to 0-based index)
sorted_masks = sorted(self.current_masks, key=lambda x: x['area'], reverse=True)
selected_mask = sorted_masks[mask_number - 1]
# Store reference object info
self.reference_object = {
'mask_data': selected_mask,
'known_size_cm': reference_size_cm,
'dimension': dimension # 'width' or 'height'
}
return f"βœ… Reference object #{mask_number} selected!\nπŸ“ Known {dimension}: {reference_size_cm} cm"
except Exception as e:
return f"❌ Error selecting reference: {str(e)}"
def calculate_all_sizes(self, camera_preset: str, fx_custom: float, fy_custom: float) -> str:
"""Calculate sizes of all objects using the reference object for scale"""
try:
if self.current_masks is None:
return "❌ No image processed yet."
if self.reference_object is None:
return "❌ No reference object selected. Please select a reference object first."
# Get camera parameters
if camera_preset == "Custom":
fx, fy = fx_custom, fy_custom
else:
preset = CAMERA_PRESETS[camera_preset]
fx, fy = preset["fx"], preset["fy"]
# Calculate reference object's pixel dimensions first
ref_mask = self.reference_object['mask_data']['segmentation']
ref_stats = geometry.pixel_to_metric(ref_mask, self.current_depth, fx, fy)
# Get the reference object's measured dimension in pixels
if self.reference_object['dimension'] == 'width':
ref_pixel_size = ref_stats['width_m'] * 100 # Convert to cm
else: # height
ref_pixel_size = ref_stats['height_m'] * 100 # Convert to cm
# Calculate scale factor: known_size / measured_size
scale_factor = self.reference_object['known_size_cm'] / ref_pixel_size
# Calculate sizes for all objects
results = []
sorted_masks = sorted(self.current_masks, key=lambda x: x['area'], reverse=True)
for i, mask_data in enumerate(sorted_masks):
mask = mask_data['segmentation']
stats = geometry.pixel_to_metric(mask, self.current_depth, fx, fy)
# Apply scale correction
corrected_width = stats['width_m'] * 100 * scale_factor # cm
corrected_height = stats['height_m'] * 100 * scale_factor # cm
corrected_distance = stats['distance_m'] * scale_factor # meters
# Check if this is the reference object by comparing mask data
is_reference = np.array_equal(mask_data['segmentation'], self.reference_object['mask_data']['segmentation'])
ref_marker = " (REFERENCE)" if is_reference else ""
results.append(f"Object #{i+1}{ref_marker}:")
results.append(f" πŸ“ Width: {corrected_width:.1f} cm")
results.append(f" πŸ“ Height: {corrected_height:.1f} cm")
results.append(f" πŸ“ Distance: {corrected_distance:.2f} m")
results.append(f" πŸ“ Area: {mask_data['area']} pixels")
results.append("")
# Find reference object number for display
ref_object_num = None
for i, mask_data in enumerate(sorted_masks):
if np.array_equal(mask_data['segmentation'], self.reference_object['mask_data']['segmentation']):
ref_object_num = i + 1
break
# Add calibration info
results.append("=" * 40)
results.append("πŸ“Š Calibration Info:")
results.append(f"πŸ“· Camera: {camera_preset}")
results.append(f"πŸ” Scale factor: {scale_factor:.3f}")
results.append(f"πŸ“ Reference: Object #{ref_object_num if ref_object_num else 'Unknown'}")
results.append(f"πŸ“ Known {self.reference_object['dimension']}: {self.reference_object['known_size_cm']} cm")
return "\n".join(results)
except Exception as e:
return f"❌ Error calculating sizes: {str(e)}"
# Initialize the app
app = SizeEstimatorApp()
# Gradio interface
def create_interface():
with gr.Blocks(title="πŸ“ Smart Object Size Estimator", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# πŸ“ Smart Object Size Estimator
Upload an image and get real-world size measurements of objects using AI-powered depth estimation and segmentation.
## How to use:
1. **Upload an image** and select your camera type
2. **Click Process** to detect objects
3. **Select a reference object** by clicking its number and entering its known size
4. **Calculate sizes** to get measurements of all objects
""")
with gr.Row():
with gr.Column(scale=1):
# Input section
gr.Markdown("### πŸ“€ Input")
image_input = gr.Image(type="numpy", label="Upload Image")
# Camera settings
gr.Markdown("### πŸ“· Camera Settings")
camera_preset = gr.Dropdown(
choices=list(CAMERA_PRESETS.keys()),
value="iPhone 12/13/14 (Main Camera)",
label="Camera Type",
info="Select your camera or choose 'Custom' for manual input"
)
with gr.Row():
fx_custom = gr.Number(value=1500, label="Focal Length X (pixels)", visible=False)
fy_custom = gr.Number(value=1500, label="Focal Length Y (pixels)", visible=False)
process_btn = gr.Button("πŸ”„ Process Image", variant="primary", size="lg")
# Reference object selection
gr.Markdown("### πŸ“ Reference Object")
with gr.Row():
mask_number = gr.Number(value=1, label="Object Number", precision=0, minimum=1)
reference_size = gr.Number(value=10.0, label="Known Size (cm)", minimum=0.1)
dimension_choice = gr.Radio(
choices=["width", "height"],
value="width",
label="Which dimension is the known size?"
)
select_ref_btn = gr.Button("πŸ“Œ Set as Reference", variant="secondary")
calculate_btn = gr.Button("πŸ“Š Calculate All Sizes", variant="primary", size="lg")
with gr.Column(scale=2):
# Output section
gr.Markdown("### πŸ–ΌοΈ Results")
image_output = gr.Image(label="Detected Objects")
status_output = gr.Textbox(label="Status", lines=4, max_lines=10)
results_output = gr.Textbox(label="Size Measurements", lines=15, max_lines=25)
# Event handlers
def toggle_custom_focal(preset):
if preset == "Custom":
return gr.update(visible=True), gr.update(visible=True)
else:
return gr.update(visible=False), gr.update(visible=False)
camera_preset.change(
toggle_custom_focal,
inputs=[camera_preset],
outputs=[fx_custom, fy_custom]
)
# Load models on startup
demo.load(app.load_models, outputs=[status_output])
process_btn.click(
app.process_image,
inputs=[image_input, camera_preset, fx_custom, fy_custom],
outputs=[image_output, status_output]
)
select_ref_btn.click(
app.select_reference_object,
inputs=[mask_number, reference_size, dimension_choice],
outputs=[status_output]
)
calculate_btn.click(
app.calculate_all_sizes,
inputs=[camera_preset, fx_custom, fy_custom],
outputs=[results_output]
)
# Additional controls and info
with gr.Row():
with gr.Column():
gr.Markdown("### 🎯 Quick Actions")
clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
with gr.Column():
gr.Markdown("### πŸ“Š Session Info")
session_info = gr.Textbox(label="Current Session", value="No image processed", interactive=False)
# Event handlers for additional features
def clear_session():
app.current_image = None
app.current_depth = None
app.current_masks = None
app.reference_object = None
return (
None, # image_output
"πŸ—‘οΈ Session cleared. Upload a new image to start.", # status_output
"", # results_output
"No image processed" # session_info
)
def update_session_info(camera_preset, fx_custom, fy_custom):
if app.current_masks is None:
return "No image processed"
if camera_preset == "Custom":
cam_info = f"Custom (fx={fx_custom:.0f}, fy={fy_custom:.0f})"
else:
cam_info = camera_preset
ref_info = "None selected"
if app.reference_object:
ref_info = f"Object with {app.reference_object['known_size_cm']} cm {app.reference_object['dimension']}"
return f"πŸ“· Camera: {cam_info}\nπŸ“ Reference: {ref_info}\n🎯 Objects: {len(app.current_masks)}"
clear_btn.click(
clear_session,
outputs=[image_output, status_output, results_output, session_info]
)
# Update session info when things change
for component in [camera_preset, fx_custom, fy_custom]:
component.change(
update_session_info,
inputs=[camera_preset, fx_custom, fy_custom],
outputs=[session_info]
)
gr.Markdown("""
### πŸ’‘ Tips for best results:
- Use good lighting and avoid shadows
- Ensure objects are clearly visible and separated
- Choose a reference object you know the exact size of
- For phones, try the camera-specific presets first
- Custom focal lengths can be calibrated using camera calibration tools
""")
return demo
if __name__ == "__main__":
demo = create_interface()
demo.launch(share=True, debug=True)