Update sam2point/configs.py
Browse files- sam2point/configs.py +71 -34
sam2point/configs.py
CHANGED
|
@@ -10,60 +10,74 @@ sample_2 = {'path': 'data/S3DIS/Area_1_conferenceRoom_1.txt',
|
|
| 10 |
|
| 11 |
sample_3 = {'path': 'data/S3DIS/Area_2_WC_1.txt',
|
| 12 |
'point_prompts': [[0.31414868, 0.59265659, 0.50951199], [0.6628697, 0.90842333, 0.34036394],[0.63868905, 0.36414687, 0.94954508],
|
| 13 |
-
[0.11171063, 0.85788337, 0.18072787],
|
| 14 |
[0.88589129, 0.59049676, 0.44830438],],
|
| 15 |
'box_prompts': [[0.35, 0.8, 0.05, 0.45, 1.0, 0.4], [0.48, 0.65, 0.0, 0.55, 0.99, 0.99], [0.57, 0.2, 0.85, 0.7, 0.48, 1.0],
|
| 16 |
-
[0.61, 0., 0.33, 0.71, 0.13, 0.51],],
|
| 17 |
'mask_prompts': [[0.31414868, 0.59265659, 0.50951199], [0.6628697, 0.90842333, 0.34036394],[0.63868905, 0.36414687, 0.94954508],
|
| 18 |
-
[0.11171063, 0.85788337, 0.18072787],
|
| 19 |
[0.88589129, 0.59049676, 0.44830438],],
|
| 20 |
}
|
| 21 |
|
| 22 |
|
| 23 |
sample_4 = {'path': 'data/S3DIS/Area_4_lobby_2.txt',
|
| 24 |
-
'point_prompts': [[0.19949431, 0.28597082, 0.25131625],
|
| 25 |
[0.72566372, 0.3617284, 0.65601966], [0.50316056, 0.57519641, 0.32186732],
|
| 26 |
[0.46396966, 0.52345679, 0.54756055],],
|
| 27 |
'box_prompts': [[0.42, 0.45, 0.3, 0.49, 0.54, 0.65], [0.45, 0.57, 0.27, 0.55, 0.63, 0.36], [0.17, 0.35, 0., 0.25, 0.4, 0.3],
|
| 28 |
[0.15, 0.25, 0.4, 0.19, 0.33, 0.62], [0.17, 0.78, 0.27, 0.2, 0.84, 0.43]],
|
| 29 |
-
'mask_prompts': [[0.
|
|
|
|
| 30 |
[0.46396966, 0.52345679, 0.54756055],],
|
| 31 |
}
|
| 32 |
|
| 33 |
sample_1 = {'path': 'data/S3DIS/Area_5_office_3.txt',
|
| 34 |
-
'point_prompts': [
|
| 35 |
[0.90161319, 0.51668286, 0.21546617], [0.98404538, 0.29024943, 0.51013408],
|
| 36 |
[0.76369438, 0.32458698, 0.23542251]],
|
| 37 |
'box_prompts': [[0., 0.48, 0.23, 0.12, 0.61, 0.31], [0.4, 0.25, 0., 0.6, 0.6, 0.3], [0.45, 0.85, 0.45, 0.65, 0.99, 0.55],
|
| 38 |
[0.38, 0.95, 0.25, 0.48, 1.00, 0.42], [0.65, 0.45, 0., 0.75, 0.6, 0.3]],
|
| 39 |
'mask_prompts': [[0.45080659, 0.88824101, 0.22856252],
|
| 40 |
[0.90161319, 0.51668286, 0.21546617], [0.98404538, 0.29024943, 0.51013408],
|
| 41 |
-
[0.76369438, 0.32458698, 0.23542251]],
|
| 42 |
}
|
| 43 |
|
| 44 |
sample_0 = {'path': 'data/S3DIS/Area_6_office_9.txt',
|
| 45 |
'point_prompts': [[0.16548, 0.27853667, 0.1886402], [0.46150787, 0.09795895, 0.26989673], [0.2904479, 0.5073498, 0.28115318],
|
| 46 |
[0.9304859, 0.40291342, 0.32013769], [0.802557, 0.5818576, 0.19074],
|
| 47 |
[0.52659518, 0.5240772, 0.40165232], [0.29337714, 0.8905976, 0.2722375], [0.563984, 0.925, 0.3803788],],
|
|
|
|
| 48 |
'box_prompts': [[0.1, 0.2, 0.0, 0.2, 0.3, 0.4], [0.1, 0.02, 0.2, 0.9, 0.2, 0.3], [0.7, 0.5, 0., 0.9, 0.7, 0.4],
|
| 49 |
[0.85, 0.3, 0.02, 0.98, 0.5, 0.8], [0.4, 0.4, 0.3, 0.6, 0.6, 0.5], ],
|
| 50 |
'mask_prompts': [[0.16548, 0.27853667, 0.1886402], [0.46150787, 0.09795895, 0.26989673], [0.2904479, 0.5073498, 0.28115318],
|
| 51 |
[0.9304859, 0.40291342, 0.32013769], [0.802557, 0.5818576, 0.19074],
|
| 52 |
[0.52659518, 0.5240772, 0.40165232], [0.29337714, 0.8905976, 0.2722375], [0.563984, 0.925, 0.3803788],]
|
|
|
|
| 53 |
}
|
| 54 |
|
| 55 |
|
| 56 |
S3DIS_samples = [sample_2, sample_3, sample_4, sample_1, sample_0]
|
| 57 |
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
[0.48, 0.95, 0.58, 0.8, 0.99, 0.9]],
|
| 63 |
'mask_prompts': [[0.50845712, 0.4027696, 0.19570725], [0.26778319, 0.9830749, 0.44313431]],
|
| 64 |
}
|
| 65 |
sample_2 = {'path': 'data/ScanNet/scene0010_01.pth',
|
| 66 |
-
'point_prompts': [[0.86644632, 0.26297486, 0.5173167]],
|
| 67 |
'box_prompts': [[0.6, 0.72, 0.0, 0.75, 0.85, 0.6], [0.75, 0.70, 0.5, 0.92, 0.92, 0.75], [0.05, 0.92, 0.05, 0.27, 1.0, 0.82],
|
| 68 |
[0.35, 0.03, 0.15, 0.5, 0.1, 0.42], ],
|
| 69 |
'mask_prompts': [[0.86644632, 0.26297486, 0.5173167]],
|
|
@@ -72,14 +86,18 @@ sample_2 = {'path': 'data/ScanNet/scene0010_01.pth',
|
|
| 72 |
|
| 73 |
sample_3 = {'path': 'data/ScanNet/scene0016_02.pth',
|
| 74 |
'point_prompts': [[0.2898192, 0.5845358, 0.7862434], [0.8251329,0.1763976,0.2942619]],
|
| 75 |
-
|
|
|
|
|
|
|
| 76 |
'mask_prompts': [[0.2898192, 0.5845358, 0.7862434]],
|
| 77 |
}
|
| 78 |
|
| 79 |
|
| 80 |
sample_4 = {'path': 'data/ScanNet/scene0019_01.pth',
|
| 81 |
-
'point_prompts': [[0.52182293, 0.69650459, 0.36580974], [0.6603151, 0.26341686, 0.33537653],[0.03188787, 0.65648252, 0.43863711]],
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
'mask_prompts': [[0.52182293, 0.69650459, 0.36580974], [0.6603151, 0.26341686, 0.33537653], [0.17163187, 0.30585486, 0.31457961], [0.03188787, 0.65648252, 0.43863711]],
|
| 84 |
}
|
| 85 |
|
|
@@ -94,33 +112,34 @@ sample_6 = {'path': 'data/ScanNet/scene0002_00.pth',
|
|
| 94 |
'mask_prompts': [[0.56711978, 0.74271345, 0.1753805 ], [0.61877084, 0.47617316, 0.23380645]],
|
| 95 |
}
|
| 96 |
|
| 97 |
-
ScanNet_samples = [sample_1, sample_2, sample_3, sample_4, sample_5, sample_6]
|
| 98 |
|
| 99 |
|
| 100 |
sample_0 = {'path': 'data/Objaverse/plant.npy',
|
| 101 |
-
'point_prompts': [[0.50455284, 0.47794762, 0.0007253083], [0.28331658, 0.19435011, 0.77393067]],
|
| 102 |
'voxel_size': [0.038, 0.04],
|
| 103 |
-
|
| 104 |
-
'
|
| 105 |
-
'
|
|
|
|
| 106 |
'voxel_size_mask': [0.038]
|
| 107 |
}
|
| 108 |
|
| 109 |
|
| 110 |
sample_1 = {'path': 'data/Objaverse/human.npy',
|
| 111 |
-
'point_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ], [0.7136412, 0.49501216, 0.5020814 ]],
|
| 112 |
'voxel_size': [0.055, 0.045, 0.05],
|
| 113 |
'box_prompts': [[0., 0.17, -0.01, 0.72, 0.80, 0.3], [-0.01, 0., 0.28, 0.8, 1, 0.82], [-0.01, 0.28, 0.89, 1, 0.72, 1.02]],
|
| 114 |
'voxel_size_box': [0.055, 0.045, 0.055],
|
| 115 |
-
'mask_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ]],
|
| 116 |
'voxel_size_mask': [0.055, 0.055],
|
| 117 |
}
|
| 118 |
sample_2 = {'path': 'data/Objaverse/lock.npy',
|
| 119 |
-
'point_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.44947368, 0.21654338, 0.58450174]],
|
| 120 |
-
'voxel_size': [0.04, 0.05, 0.05],
|
| 121 |
-
'box_prompts': [[0.61, 0.4, 0.35, 0.8, 0.8, 0.6], [0.42, -0.02, -0.02, 1.02, 0.4, 1]],
|
| 122 |
-
'voxel_size_box': [0.04, 0.011],
|
| 123 |
-
'mask_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.9157764, 0.1995991, 0.14024617]],
|
| 124 |
'voxel_size_mask': [0.04, 0.055, 0.04],
|
| 125 |
}
|
| 126 |
|
|
@@ -152,11 +171,11 @@ sample_5 = {'path': 'data/Objaverse/skateboard.npy',
|
|
| 152 |
}
|
| 153 |
|
| 154 |
sample_6 = {'path': 'data/Objaverse/popcorn_machine.npy',
|
| 155 |
-
'point_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]],
|
| 156 |
'voxel_size': [0.04, 0.04],
|
| 157 |
'box_prompts': [[0.208, 0.157, 0.493, 0.779, 0.89, 0.925]],
|
| 158 |
'voxel_size_box': [0.04],
|
| 159 |
-
'mask_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]],
|
| 160 |
'voxel_size_mask': [0.04, 0.04],
|
| 161 |
}
|
| 162 |
|
|
@@ -182,7 +201,7 @@ sample_8 = {'path': 'data/Objaverse/bus_shelter.npy',
|
|
| 182 |
sample_9 = {'path': 'data/Objaverse/thor_hammer.npy',
|
| 183 |
'point_prompts': [[0.6211515, 0.5109989, 0.3867725], [0.44443, 0.2363458, 0.7229376]],
|
| 184 |
'voxel_size': [0.05, 0.05, 0.05],
|
| 185 |
-
'box_prompts': [[0,0,0.723,1,1,1]],
|
| 186 |
'voxel_size_box': [0.05, 0.05],
|
| 187 |
'mask_prompts': [[0.44443, 0.2363458, 0.7229376]],
|
| 188 |
'voxel_size_mask': [0.05],
|
|
@@ -191,7 +210,7 @@ sample_9 = {'path': 'data/Objaverse/thor_hammer.npy',
|
|
| 191 |
sample_10 = {'path': 'data/Objaverse/horse.npy',
|
| 192 |
'point_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
| 193 |
'voxel_size': [0.04, 0.04],
|
| 194 |
-
'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]],
|
| 195 |
'voxel_size_box': [0.04, 0.04],
|
| 196 |
'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
| 197 |
'voxel_size_mask': [0.04, 0.04],
|
|
@@ -202,13 +221,28 @@ sample_11 = {'path': 'data/Objaverse/dinner_booth.npy',
|
|
| 202 |
[0.9192697, 0.4469184, 0.0017635],
|
| 203 |
[0.4987888, 0.6916906, 0.5106028]],
|
| 204 |
'voxel_size': [0.04, 0.04],
|
| 205 |
-
'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]],
|
| 206 |
'voxel_size_box': [0.04, 0.04],
|
| 207 |
'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
| 208 |
'voxel_size_mask': [0.04, 0.04],
|
| 209 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
|
| 211 |
Objaverse_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6, sample_7, sample_8, sample_9, sample_10, sample_11]
|
|
|
|
|
|
|
| 212 |
|
| 213 |
|
| 214 |
sample_0 = {'path': 'data/KITTI/scene1.npy',
|
|
@@ -317,8 +351,8 @@ sample_4 = {'path': 'data/Semantic3D/patch1.npy',
|
|
| 317 |
'voxel_size': [0.017, 0.017, 0.017, 0.017],
|
| 318 |
'box_prompts': [],
|
| 319 |
'voxel_size_box': [],
|
| 320 |
-
'mask_prompts': [[0.1857393, 0.2675134, 0.2463012]],
|
| 321 |
-
'voxel_size_mask': [0.01],
|
| 322 |
}
|
| 323 |
|
| 324 |
sample_5 = {'path': 'data/Semantic3D/patch50.npy',
|
|
@@ -343,4 +377,7 @@ sample_6 = {'path': 'data/Semantic3D/patch62.npy',
|
|
| 343 |
Semantic3D_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6]
|
| 344 |
|
| 345 |
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
sample_3 = {'path': 'data/S3DIS/Area_2_WC_1.txt',
|
| 12 |
'point_prompts': [[0.31414868, 0.59265659, 0.50951199], [0.6628697, 0.90842333, 0.34036394],[0.63868905, 0.36414687, 0.94954508],
|
| 13 |
+
[0.11171063, 0.85788337, 0.18072787], #[0.76159073, 0.82289417, 0.68899917],
|
| 14 |
[0.88589129, 0.59049676, 0.44830438],],
|
| 15 |
'box_prompts': [[0.35, 0.8, 0.05, 0.45, 1.0, 0.4], [0.48, 0.65, 0.0, 0.55, 0.99, 0.99], [0.57, 0.2, 0.85, 0.7, 0.48, 1.0],
|
| 16 |
+
[0.61, 0., 0.33, 0.71, 0.13, 0.51],], # [0.51, 0., 0., 0.61, 0.15, 0.37],
|
| 17 |
'mask_prompts': [[0.31414868, 0.59265659, 0.50951199], [0.6628697, 0.90842333, 0.34036394],[0.63868905, 0.36414687, 0.94954508],
|
| 18 |
+
[0.11171063, 0.85788337, 0.18072787], #[0.76159073, 0.82289417, 0.68899917],
|
| 19 |
[0.88589129, 0.59049676, 0.44830438],],
|
| 20 |
}
|
| 21 |
|
| 22 |
|
| 23 |
sample_4 = {'path': 'data/S3DIS/Area_4_lobby_2.txt',
|
| 24 |
+
'point_prompts': [[0.19949431, 0.28597082, 0.25131625], #[0.30316056, 0.87452301, 0.33696034],
|
| 25 |
[0.72566372, 0.3617284, 0.65601966], [0.50316056, 0.57519641, 0.32186732],
|
| 26 |
[0.46396966, 0.52345679, 0.54756055],],
|
| 27 |
'box_prompts': [[0.42, 0.45, 0.3, 0.49, 0.54, 0.65], [0.45, 0.57, 0.27, 0.55, 0.63, 0.36], [0.17, 0.35, 0., 0.25, 0.4, 0.3],
|
| 28 |
[0.15, 0.25, 0.4, 0.19, 0.33, 0.62], [0.17, 0.78, 0.27, 0.2, 0.84, 0.43]],
|
| 29 |
+
'mask_prompts': [#[0.19949431, 0.28597082, 0.25131625], [0.30316056, 0.87452301, 0.33696034],
|
| 30 |
+
[0.72566372, 0.3617284, 0.65601966], [0.50316056, 0.57519641, 0.32186732],
|
| 31 |
[0.46396966, 0.52345679, 0.54756055],],
|
| 32 |
}
|
| 33 |
|
| 34 |
sample_1 = {'path': 'data/S3DIS/Area_5_office_3.txt',
|
| 35 |
+
'point_prompts': [ #[0.45080659, 0.88824101, 0.22856252], [0.55965254, 0.72432783, 0.00623636], [0.36589257, 0.93683188, 0.64826941],
|
| 36 |
[0.90161319, 0.51668286, 0.21546617], [0.98404538, 0.29024943, 0.51013408],
|
| 37 |
[0.76369438, 0.32458698, 0.23542251]],
|
| 38 |
'box_prompts': [[0., 0.48, 0.23, 0.12, 0.61, 0.31], [0.4, 0.25, 0., 0.6, 0.6, 0.3], [0.45, 0.85, 0.45, 0.65, 0.99, 0.55],
|
| 39 |
[0.38, 0.95, 0.25, 0.48, 1.00, 0.42], [0.65, 0.45, 0., 0.75, 0.6, 0.3]],
|
| 40 |
'mask_prompts': [[0.45080659, 0.88824101, 0.22856252],
|
| 41 |
[0.90161319, 0.51668286, 0.21546617], [0.98404538, 0.29024943, 0.51013408],
|
| 42 |
+
[0.76369438, 0.32458698, 0.23542251]], #[0.55965254, 0.72432783, 0.00623636], [0.36589257, 0.93683188, 0.64826941],
|
| 43 |
}
|
| 44 |
|
| 45 |
sample_0 = {'path': 'data/S3DIS/Area_6_office_9.txt',
|
| 46 |
'point_prompts': [[0.16548, 0.27853667, 0.1886402], [0.46150787, 0.09795895, 0.26989673], [0.2904479, 0.5073498, 0.28115318],
|
| 47 |
[0.9304859, 0.40291342, 0.32013769], [0.802557, 0.5818576, 0.19074],
|
| 48 |
[0.52659518, 0.5240772, 0.40165232], [0.29337714, 0.8905976, 0.2722375], [0.563984, 0.925, 0.3803788],],
|
| 49 |
+
# [0.73819816, 0.913756, 0.2815835 ], [0.338812, 0.48102965, 0.34078142]],
|
| 50 |
'box_prompts': [[0.1, 0.2, 0.0, 0.2, 0.3, 0.4], [0.1, 0.02, 0.2, 0.9, 0.2, 0.3], [0.7, 0.5, 0., 0.9, 0.7, 0.4],
|
| 51 |
[0.85, 0.3, 0.02, 0.98, 0.5, 0.8], [0.4, 0.4, 0.3, 0.6, 0.6, 0.5], ],
|
| 52 |
'mask_prompts': [[0.16548, 0.27853667, 0.1886402], [0.46150787, 0.09795895, 0.26989673], [0.2904479, 0.5073498, 0.28115318],
|
| 53 |
[0.9304859, 0.40291342, 0.32013769], [0.802557, 0.5818576, 0.19074],
|
| 54 |
[0.52659518, 0.5240772, 0.40165232], [0.29337714, 0.8905976, 0.2722375], [0.563984, 0.925, 0.3803788],]
|
| 55 |
+
# [0.73819816, 0.913756, 0.2815835 ], [0.338812, 0.48102965, 0.34078142]],
|
| 56 |
}
|
| 57 |
|
| 58 |
|
| 59 |
S3DIS_samples = [sample_2, sample_3, sample_4, sample_1, sample_0]
|
| 60 |
|
| 61 |
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
# sample_0 = {'path': 'data/ScanNet/scene0001_01.pth',
|
| 65 |
+
# 'point_prompts': [[0.48574361, 0.70011979, 0.21237852],
|
| 66 |
+
# [0.28947121, 0.15144145, 0.24688229], [0.3489365, 0.53977334, 0.02221746],
|
| 67 |
+
# [0.48059669, 0.88824904, 0.25690538]], #[0.48760539, 0.12294616, 0.25476629], #[0.48738128, 0.63986588, 0.25412986],
|
| 68 |
+
# 'box_prompts': [[0.25, 0.63, 0., 0.57, 0.75, 0.37], [0.42, 0.83, 0., 0.54, 0.94, 0.3], [0.4, 0.05, 0.0, 0.53, 0.2, 0.3],
|
| 69 |
+
# [0.12, 0.35, 0.0, 0.22, 0.45, 0.24], [0.88, 0.2, 0.1, 0.95, 0.8, 0.48]],
|
| 70 |
+
# }
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
sample_1 = {'path': 'data/ScanNet/scene0005_01.pth', #[0.04293748, 0.38949549, 0.314679], [0.24069363, 0.51310396, 0.01414406],
|
| 74 |
+
'point_prompts': [[0.50845712, 0.4027696, 0.19570725], [0.26778319, 0.9830749, 0.44313431]], #[0.6458742, 0.33051795, 0.31433141], [0.11679079, 0.60943264, 0.40539789],
|
| 75 |
+
'box_prompts': [[0.6, 0.6, 0., 0.83, 0.9, 0.33], [0.0, 0.57, 0.05, 0.15, 0.67, 0.48], #[0.41, 0.65, 0., 0.56, 0.77, 0.35],
|
| 76 |
[0.48, 0.95, 0.58, 0.8, 0.99, 0.9]],
|
| 77 |
'mask_prompts': [[0.50845712, 0.4027696, 0.19570725], [0.26778319, 0.9830749, 0.44313431]],
|
| 78 |
}
|
| 79 |
sample_2 = {'path': 'data/ScanNet/scene0010_01.pth',
|
| 80 |
+
'point_prompts': [[0.86644632, 0.26297486, 0.5173167]], #[0.15311202, 0.44485098, 0.4582684], [0.89919734, 0.40822271, 0.6298126 ]], #,[0.66389197, 0.49352551, 0.2987611], [0.09592603, 0.20024474, 0.67744112]
|
| 81 |
'box_prompts': [[0.6, 0.72, 0.0, 0.75, 0.85, 0.6], [0.75, 0.70, 0.5, 0.92, 0.92, 0.75], [0.05, 0.92, 0.05, 0.27, 1.0, 0.82],
|
| 82 |
[0.35, 0.03, 0.15, 0.5, 0.1, 0.42], ],
|
| 83 |
'mask_prompts': [[0.86644632, 0.26297486, 0.5173167]],
|
|
|
|
| 86 |
|
| 87 |
sample_3 = {'path': 'data/ScanNet/scene0016_02.pth',
|
| 88 |
'point_prompts': [[0.2898192, 0.5845358, 0.7862434], [0.8251329,0.1763976,0.2942619]],
|
| 89 |
+
# [[0.77345204, 0.5883323, 0.21049459], [0.82484114, 0.16314957, 0.23850442], [0.97325081, 0.28361404, 0.15121479],
|
| 90 |
+
# [0.29043797, 0.58934051, 0.82521498], [0.46316043, 0.34840286, 0.01032902], [0.3637068, 0.50896871, 0.63058698]],
|
| 91 |
+
'box_prompts': [[0.72, 0.36, 0.1, 0.9, 0.75, 0.75], [0.27, 0.54, 0.7, 0.3, 0.65, 0.9],], #[0.86, 0.12, 0.33, 0.99, 0.24, 0.54], [0.42, 0.5, 0.05, 0.55, 0.68, 0.42]
|
| 92 |
'mask_prompts': [[0.2898192, 0.5845358, 0.7862434]],
|
| 93 |
}
|
| 94 |
|
| 95 |
|
| 96 |
sample_4 = {'path': 'data/ScanNet/scene0019_01.pth',
|
| 97 |
+
'point_prompts': [[0.52182293, 0.69650459, 0.36580974], [0.6603151, 0.26341686, 0.33537653],[0.03188787, 0.65648252, 0.43863711]], #
|
| 98 |
+
# [0.79430991, 0.31488013, 0.2448331], [0.14427963, 0.69153076, 0.20673281], [0.17163187, 0.30585486, 0.31457961],
|
| 99 |
+
'box_prompts': [[0.55, 0.22, 0.05, 0.72, 0.3, 0.58], [0.0, 0.27, 0.05, 0.2, 0.35, 0.45]], #[0.03, 0.59, 0.05, 0.2, 0.85, 0.35],
|
| 100 |
+
# [0.43, 0.65, 0.05, 0.64, 0.72, 0.65]],
|
| 101 |
'mask_prompts': [[0.52182293, 0.69650459, 0.36580974], [0.6603151, 0.26341686, 0.33537653], [0.17163187, 0.30585486, 0.31457961], [0.03188787, 0.65648252, 0.43863711]],
|
| 102 |
}
|
| 103 |
|
|
|
|
| 112 |
'mask_prompts': [[0.56711978, 0.74271345, 0.1753805 ], [0.61877084, 0.47617316, 0.23380645]],
|
| 113 |
}
|
| 114 |
|
| 115 |
+
ScanNet_samples = [sample_1, sample_2, sample_3, sample_4, sample_5, sample_6] #sample_0,
|
| 116 |
|
| 117 |
|
| 118 |
sample_0 = {'path': 'data/Objaverse/plant.npy',
|
| 119 |
+
'point_prompts': [[0.50455284, 0.47794762, 0.0007253083], [0.28331658, 0.19435011, 0.77393067]], #[7006, 1458],
|
| 120 |
'voxel_size': [0.038, 0.04],
|
| 121 |
+
# 'voxel_size': [0.03, 0.04],
|
| 122 |
+
'box_prompts': [[0.08, 0.18, -0.02, 0.68, 0.73, 0.315]], #, [0, 0, 0.3, 1, 1, 1.01]], #[0.11, 0.43, 0.82, 0.5, 1.01, 1.01]],
|
| 123 |
+
'voxel_size_box': [0.04, 0.05], #0.01,
|
| 124 |
+
'mask_prompts': [[0.50455284, 0.47794762, 0.0007253083]], #[7006, 1458], , [0.28331658, 0.19435011, 0.77393067]
|
| 125 |
'voxel_size_mask': [0.038]
|
| 126 |
}
|
| 127 |
|
| 128 |
|
| 129 |
sample_1 = {'path': 'data/Objaverse/human.npy',
|
| 130 |
+
'point_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ], [0.7136412, 0.49501216, 0.5020814 ]], #[1112, 2133, 2133],
|
| 131 |
'voxel_size': [0.055, 0.045, 0.05],
|
| 132 |
'box_prompts': [[0., 0.17, -0.01, 0.72, 0.80, 0.3], [-0.01, 0., 0.28, 0.8, 1, 0.82], [-0.01, 0.28, 0.89, 1, 0.72, 1.02]],
|
| 133 |
'voxel_size_box': [0.055, 0.045, 0.055],
|
| 134 |
+
'mask_prompts': [[0.57825595, 0.5005686, 0.11494722], [0.7136412, 0.49501216, 0.5020814 ]], #[1112, 2133, 2133],
|
| 135 |
'voxel_size_mask': [0.055, 0.055],
|
| 136 |
}
|
| 137 |
sample_2 = {'path': 'data/Objaverse/lock.npy',
|
| 138 |
+
'point_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.44947368, 0.21654338, 0.58450174]], #[1029, 2064, 3541], #, [0.67447126, 0.6777649 , 0.51486933]
|
| 139 |
+
'voxel_size': [0.04, 0.05, 0.05], #, 0.05
|
| 140 |
+
'box_prompts': [[0.61, 0.4, 0.35, 0.8, 0.8, 0.6], [0.42, -0.02, -0.02, 1.02, 0.4, 1]], #[0., 0.25, -0.02, 0.4, 0.82, 1],
|
| 141 |
+
'voxel_size_box': [0.04, 0.011], # 0.05, 0.04
|
| 142 |
+
'mask_prompts': [[0.6513301, 0.6753892, 0.52316076], [0.21359734, 0.6097132 , 0.7939796 ], [0.9157764, 0.1995991, 0.14024617]], #[1029, 2064, 3541],
|
| 143 |
'voxel_size_mask': [0.04, 0.055, 0.04],
|
| 144 |
}
|
| 145 |
|
|
|
|
| 171 |
}
|
| 172 |
|
| 173 |
sample_6 = {'path': 'data/Objaverse/popcorn_machine.npy',
|
| 174 |
+
'point_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]], #, [0.8857, 0.8296, 0.6090]],
|
| 175 |
'voxel_size': [0.04, 0.04],
|
| 176 |
'box_prompts': [[0.208, 0.157, 0.493, 0.779, 0.89, 0.925]],
|
| 177 |
'voxel_size_box': [0.04],
|
| 178 |
+
'mask_prompts': [[0.278306, 0.4913014, 0.7318756], [0.5867118, 0.1180351, 0.5844101]], #, [0.8857, 0.8296, 0.6090]],
|
| 179 |
'voxel_size_mask': [0.04, 0.04],
|
| 180 |
}
|
| 181 |
|
|
|
|
| 201 |
sample_9 = {'path': 'data/Objaverse/thor_hammer.npy',
|
| 202 |
'point_prompts': [[0.6211515, 0.5109989, 0.3867725], [0.44443, 0.2363458, 0.7229376]],
|
| 203 |
'voxel_size': [0.05, 0.05, 0.05],
|
| 204 |
+
'box_prompts': [[0,0,0.723,1,1,1]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
|
| 205 |
'voxel_size_box': [0.05, 0.05],
|
| 206 |
'mask_prompts': [[0.44443, 0.2363458, 0.7229376]],
|
| 207 |
'voxel_size_mask': [0.05],
|
|
|
|
| 210 |
sample_10 = {'path': 'data/Objaverse/horse.npy',
|
| 211 |
'point_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
| 212 |
'voxel_size': [0.04, 0.04],
|
| 213 |
+
'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
|
| 214 |
'voxel_size_box': [0.04, 0.04],
|
| 215 |
'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
| 216 |
'voxel_size_mask': [0.04, 0.04],
|
|
|
|
| 221 |
[0.9192697, 0.4469184, 0.0017635],
|
| 222 |
[0.4987888, 0.6916906, 0.5106028]],
|
| 223 |
'voxel_size': [0.04, 0.04],
|
| 224 |
+
'box_prompts': [[0.65,0,0.3,1,1,0.79], [0.37, 0, 0, 1, 1, 0.2]], #, [0.353, 0.41, 0, 0.636, 0.586, 0.725]],
|
| 225 |
'voxel_size_box': [0.04, 0.04],
|
| 226 |
'mask_prompts': [[0.3359364, 0.7555879, 0.6848574], [0.9221735, 0.1779197, 0.1927067]],
|
| 227 |
'voxel_size_mask': [0.04, 0.04],
|
| 228 |
}
|
| 229 |
+
# sculpture.npy
|
| 230 |
+
# horse.npy
|
| 231 |
+
# pipe.npy
|
| 232 |
+
# dinner_booth.npy
|
| 233 |
+
# ornament.npy
|
| 234 |
+
# blender.npy
|
| 235 |
+
# bowl.npy
|
| 236 |
+
# human_face.npy
|
| 237 |
+
# table.npy
|
| 238 |
+
# telescope.npy
|
| 239 |
+
# planet.npy
|
| 240 |
+
# lamp.npy
|
| 241 |
+
# dragon.npy
|
| 242 |
|
| 243 |
Objaverse_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6, sample_7, sample_8, sample_9, sample_10, sample_11]
|
| 244 |
+
# sample_1, sample_2,
|
| 245 |
+
|
| 246 |
|
| 247 |
|
| 248 |
sample_0 = {'path': 'data/KITTI/scene1.npy',
|
|
|
|
| 351 |
'voxel_size': [0.017, 0.017, 0.017, 0.017],
|
| 352 |
'box_prompts': [],
|
| 353 |
'voxel_size_box': [],
|
| 354 |
+
'mask_prompts': [[0.1857393, 0.2675134, 0.2463012]], #[[0.51603703, 0.51312565, 0.50598845]],
|
| 355 |
+
'voxel_size_mask': [0.01], #[0.01],
|
| 356 |
}
|
| 357 |
|
| 358 |
sample_5 = {'path': 'data/Semantic3D/patch50.npy',
|
|
|
|
| 377 |
Semantic3D_samples = [sample_0, sample_1, sample_2, sample_3, sample_4, sample_5, sample_6]
|
| 378 |
|
| 379 |
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
VOXEL = {"point": "voxel_size", "box": "voxel_size_box", "mask": "voxel_size_mask"}
|
| 383 |
+
|