Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,29 +39,94 @@ def get_nlp(model_name: str):
|
|
39 |
logger.error(f"Error loading model {model_name}: {e}")
|
40 |
raise gr.Error(f"ไม่สามารถโหลดโมเดล {model_name} ได้: {str(e)}")
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
"
|
46 |
-
"
|
47 |
-
"
|
48 |
-
|
49 |
-
"
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
}
|
54 |
|
55 |
def get_label_info(label: str) -> Dict:
|
56 |
-
"""
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"emoji": "🔍",
|
61 |
"color": "#64748b",
|
62 |
"bg": "rgba(100, 116, 139, 0.2)",
|
63 |
-
"description": "ไม่ทราบ"
|
64 |
-
}
|
65 |
|
66 |
def split_sentences(text: str) -> List[str]:
|
67 |
"""Enhanced sentence splitting with better Thai support"""
|
@@ -82,7 +147,7 @@ def create_confidence_bar(score: float) -> str:
|
|
82 |
"""
|
83 |
|
84 |
def analyze_text(text: str, model_name: str) -> str:
|
85 |
-
"""Enhanced text analysis with
|
86 |
if not text or not text.strip():
|
87 |
return """
|
88 |
<div style="padding: 20px; background: rgba(248, 113, 113, 0.2); border-radius: 12px; border-left: 4px solid #f87171;">
|
@@ -128,18 +193,11 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
128 |
</div>
|
129 |
"""]
|
130 |
|
131 |
-
#
|
132 |
-
sentiment_counts = {
|
133 |
-
"question": 0,
|
134 |
-
"very negative": 0,
|
135 |
-
"negative": 0,
|
136 |
-
"neutral": 0,
|
137 |
-
"positive": 0,
|
138 |
-
"very positive": 0,
|
139 |
-
"other": 0
|
140 |
-
}
|
141 |
total_confidence = 0
|
142 |
sentence_results = []
|
|
|
143 |
|
144 |
# Analyze each sentence
|
145 |
for i, sentence in enumerate(sentences, 1):
|
@@ -148,14 +206,17 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
148 |
label = result['label']
|
149 |
score = result['score']
|
150 |
|
|
|
|
|
|
|
151 |
label_info = get_label_info(label)
|
152 |
-
|
153 |
|
154 |
-
#
|
155 |
-
if
|
156 |
-
sentiment_counts[
|
157 |
else:
|
158 |
-
sentiment_counts["
|
159 |
|
160 |
total_confidence += score
|
161 |
|
@@ -164,7 +225,8 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
164 |
'sentence': sentence,
|
165 |
'label_info': label_info,
|
166 |
'score': score,
|
167 |
-
'index': i
|
|
|
168 |
})
|
169 |
|
170 |
except Exception as e:
|
@@ -207,6 +269,9 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
207 |
<span style="background: {label_info['color']}; color: #f8fafc; padding: 4px 12px; border-radius: 20px; font-size: 12px; font-weight: 600; text-transform: uppercase;">
|
208 |
{label_info['description']}
|
209 |
</span>
|
|
|
|
|
|
|
210 |
<span style="color: #94a3b8; font-size: 14px;">ประโยคที่ {result['index']}</span>
|
211 |
</div>
|
212 |
<p style="color: #f8fafc; margin: 0 0 12px 0; font-size: 16px; line-height: 1.5;">
|
@@ -223,55 +288,35 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
223 |
total_sentences = len(sentences)
|
224 |
avg_confidence = total_confidence / total_sentences if total_sentences > 0 else 0
|
225 |
|
226 |
-
# Create chart data for summary
|
227 |
chart_items = []
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
"negative": "#f87171",
|
233 |
-
"neutral": "#facc15",
|
234 |
-
"positive": "#34d399",
|
235 |
-
"very positive": "#22c55e",
|
236 |
-
"other": "#64748b"
|
237 |
-
}
|
238 |
-
emojis = {
|
239 |
-
"question": "🤔",
|
240 |
-
"very negative": "😡",
|
241 |
-
"negative": "😢",
|
242 |
-
"neutral": "😐",
|
243 |
-
"positive": "😊",
|
244 |
-
"very positive": "🤩",
|
245 |
-
"other": "🔍"
|
246 |
-
}
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
if total_sentences == 0:
|
254 |
-
percentage = 0
|
255 |
-
else:
|
256 |
-
percentage = (count / total_sentences) * 100
|
257 |
|
258 |
-
# Get description from LABEL_MAPPINGS using the sentiment name
|
259 |
-
# We can find it by iterating through LABEL_MAPPINGS values
|
260 |
-
description = next((info['description'] for info in LABEL_MAPPINGS.values() if info['name'] == sentiment_name), sentiment_name)
|
261 |
-
|
262 |
chart_items.append(f"""
|
263 |
<div style="display: flex; align-items: center; gap: 12px; padding: 12px; background: rgba(59, 130, 246, 0.1); border-radius: 8px;">
|
264 |
-
<span style="font-size: 24px;">{
|
265 |
<div style="flex: 1;">
|
266 |
-
<div style="font-weight: 600; color: #f8fafc;
|
267 |
<div style="color: #94a3b8; font-size: 14px;">{count} ประโยค ({percentage:.1f}%)</div>
|
268 |
</div>
|
269 |
<div style="width: 60px; height: 6px; background: #334155; border-radius: 3px; overflow: hidden;">
|
270 |
-
<div style="width: {percentage}%; height: 100%; background: {
|
271 |
</div>
|
272 |
</div>
|
273 |
""")
|
274 |
|
|
|
|
|
|
|
275 |
html_parts.append(f"""
|
276 |
<div style="padding: 24px; background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%);">
|
277 |
<h3 style="color: #f8fafc; margin: 0 0 20px 0; font-size: 20px; font-weight: 700; display: flex; align-items: center; gap: 8px;">
|
@@ -290,9 +335,14 @@ def analyze_text(text: str, model_name: str) -> str:
|
|
290 |
</div>
|
291 |
</div>
|
292 |
|
293 |
-
<div style="display: grid; gap: 8px;">
|
294 |
{"".join(chart_items)}
|
295 |
</div>
|
|
|
|
|
|
|
|
|
|
|
296 |
</div>
|
297 |
""")
|
298 |
|
@@ -433,8 +483,8 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base()) as demo:
|
|
433 |
with gr.Row():
|
434 |
gr.HTML("""
|
435 |
<div class='main-uxui-header'>
|
436 |
-
<h1>Thai Sentiment Analysis (
|
437 |
-
<p>วิเคราะห์ความรู้สึกภาษาไทย/อังกฤษ รองรับหลายโมเดล |
|
438 |
</div>
|
439 |
""")
|
440 |
with gr.Row():
|
@@ -462,8 +512,10 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base()) as demo:
|
|
462 |
["เศร้ามากเลยวันนี้ งานเยอะเกินไป"],
|
463 |
["อาหารอร่อยดี แต่บริการช้ามาก"],
|
464 |
["คุณคิดอย่างไรกับเศรษฐกิจไทย?"],
|
465 |
-
["I love this product! It's amazing
|
466 |
-
["This is the worst experience I've ever had."]
|
|
|
|
|
467 |
],
|
468 |
inputs=input_box,
|
469 |
label="ตัวอย่างข้อความ",
|
@@ -472,15 +524,25 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Base()) as demo:
|
|
472 |
gr.HTML("""
|
473 |
<div class='main-uxui-legend'>
|
474 |
<div class='main-uxui-section-title'>
|
475 |
-
<span>🗂️</span> คำอธิบายผลลัพธ์
|
476 |
</div>
|
477 |
<div class='legend-row'>
|
478 |
-
<div class='legend-item'><strong
|
479 |
-
<div class='legend-item'><strong
|
480 |
-
<div class='legend-item'><strong>😐 เป็นกลาง</strong><br><small>Neutral</small></div>
|
481 |
-
<div class='legend-item'><strong
|
482 |
-
<div class='legend-item'><strong
|
483 |
-
<div class='legend-item'><strong>🤔 คำถาม</strong><br><small>Question</small></div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
484 |
</div>
|
485 |
</div>
|
486 |
""")
|
|
|
39 |
logger.error(f"Error loading model {model_name}: {e}")
|
40 |
raise gr.Error(f"ไม่สามารถโหลดโมเดล {model_name} ได้: {str(e)}")
|
41 |
|
42 |
+
# Comprehensive label mapping system that covers multiple model formats
|
43 |
+
COMPREHENSIVE_LABEL_MAPPINGS = {
|
44 |
+
# Standard format labels (LABEL_X)
|
45 |
+
"LABEL_0": {"sentiment": "negative", "intensity": "normal", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
46 |
+
"LABEL_1": {"sentiment": "neutral", "intensity": "normal", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
47 |
+
"LABEL_2": {"sentiment": "positive", "intensity": "normal", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
48 |
+
"LABEL_3": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
49 |
+
"LABEL_4": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
50 |
+
|
51 |
+
# Numeric format labels (0, 1, 2, etc.)
|
52 |
+
"0": {"sentiment": "negative", "intensity": "normal", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
53 |
+
"1": {"sentiment": "neutral", "intensity": "normal", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
54 |
+
"2": {"sentiment": "positive", "intensity": "normal", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
55 |
+
"3": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
56 |
+
"4": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
57 |
+
|
58 |
+
# Extended range for models with more classes
|
59 |
+
"5": {"sentiment": "very_negative", "intensity": "high", "emoji": "😡", "color": "#ef4444", "bg": "rgba(239, 68, 68, 0.2)", "description": "เชิงลบมาก"},
|
60 |
+
"LABEL_5": {"sentiment": "very_negative", "intensity": "high", "emoji": "😡", "color": "#ef4444", "bg": "rgba(239, 68, 68, 0.2)", "description": "เชิงลบมาก"},
|
61 |
+
|
62 |
+
# Text-based labels (common in some models)
|
63 |
+
"NEGATIVE": {"sentiment": "negative", "intensity": "normal", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
64 |
+
"NEUTRAL": {"sentiment": "neutral", "intensity": "normal", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
65 |
+
"POSITIVE": {"sentiment": "positive", "intensity": "normal", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
66 |
+
"VERY_NEGATIVE": {"sentiment": "very_negative", "intensity": "high", "emoji": "😡", "color": "#ef4444", "bg": "rgba(239, 68, 68, 0.2)", "description": "เชิงลบมาก"},
|
67 |
+
"VERY_POSITIVE": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
68 |
+
"QUESTION": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
69 |
+
|
70 |
+
# Lowercase variants
|
71 |
+
"negative": {"sentiment": "negative", "intensity": "normal", "emoji": "😢", "color": "#f87171", "bg": "rgba(248, 113, 113, 0.2)", "description": "เชิงลบ"},
|
72 |
+
"neutral": {"sentiment": "neutral", "intensity": "normal", "emoji": "😐", "color": "#facc15", "bg": "rgba(250, 204, 21, 0.2)", "description": "เป็นกลาง"},
|
73 |
+
"positive": {"sentiment": "positive", "intensity": "normal", "emoji": "😊", "color": "#34d399", "bg": "rgba(52, 211, 153, 0.2)", "description": "เชิงบวก"},
|
74 |
+
"very_negative": {"sentiment": "very_negative", "intensity": "high", "emoji": "😡", "color": "#ef4444", "bg": "rgba(239, 68, 68, 0.2)", "description": "เชิงลบมาก"},
|
75 |
+
"very_positive": {"sentiment": "very_positive", "intensity": "high", "emoji": "🤩", "color": "#22c55e", "bg": "rgba(34, 197, 94, 0.2)", "description": "เชิงบวกมาก"},
|
76 |
+
"question": {"sentiment": "question", "intensity": "normal", "emoji": "🤔", "color": "#60a5fa", "bg": "rgba(96, 165, 250, 0.2)", "description": "คำถาม"},
|
77 |
+
}
|
78 |
|
79 |
+
# Sentiment categories for counting and summary
|
80 |
+
SENTIMENT_CATEGORIES = {
|
81 |
+
"very_negative": {"name": "เชิงลบมาก", "emoji": "😡", "color": "#ef4444", "order": 1},
|
82 |
+
"negative": {"name": "เชิงลบ", "emoji": "😢", "color": "#f87171", "order": 2},
|
83 |
+
"neutral": {"name": "เป็นกลาง", "emoji": "😐", "color": "#facc15", "order": 3},
|
84 |
+
"positive": {"name": "เชิงบวก", "emoji": "😊", "color": "#34d399", "order": 4},
|
85 |
+
"very_positive": {"name": "เชิงบวกมาก", "emoji": "🤩", "color": "#22c55e", "order": 5},
|
86 |
+
"question": {"name": "คำถาม", "emoji": "🤔", "color": "#60a5fa", "order": 6},
|
87 |
+
"unknown": {"name": "ไม่ทราบ", "emoji": "🔍", "color": "#64748b", "order": 7}
|
88 |
}
|
89 |
|
90 |
def get_label_info(label: str) -> Dict:
|
91 |
+
"""
|
92 |
+
Enhanced label information extraction with fallback handling
|
93 |
+
Supports multiple label formats from different models
|
94 |
+
"""
|
95 |
+
# Convert to string and clean
|
96 |
+
label_str = str(label).strip()
|
97 |
+
|
98 |
+
# Try exact match first
|
99 |
+
if label_str in COMPREHENSIVE_LABEL_MAPPINGS:
|
100 |
+
return COMPREHENSIVE_LABEL_MAPPINGS[label_str]
|
101 |
+
|
102 |
+
# Try case-insensitive match
|
103 |
+
label_upper = label_str.upper()
|
104 |
+
label_lower = label_str.lower()
|
105 |
+
|
106 |
+
for key, value in COMPREHENSIVE_LABEL_MAPPINGS.items():
|
107 |
+
if key.upper() == label_upper or key.lower() == label_lower:
|
108 |
+
return value
|
109 |
+
|
110 |
+
# Try pattern matching for complex labels
|
111 |
+
if re.match(r'^LABEL_\d+$', label_str, re.IGNORECASE):
|
112 |
+
# Extract number from LABEL_X format
|
113 |
+
try:
|
114 |
+
num = int(re.findall(r'\d+', label_str)[0])
|
115 |
+
if str(num) in COMPREHENSIVE_LABEL_MAPPINGS:
|
116 |
+
return COMPREHENSIVE_LABEL_MAPPINGS[str(num)]
|
117 |
+
except (IndexError, ValueError):
|
118 |
+
pass
|
119 |
+
|
120 |
+
# Fallback for unknown labels
|
121 |
+
logger.warning(f"Unknown label: {label}")
|
122 |
+
return {
|
123 |
+
"sentiment": "unknown",
|
124 |
+
"intensity": "normal",
|
125 |
"emoji": "🔍",
|
126 |
"color": "#64748b",
|
127 |
"bg": "rgba(100, 116, 139, 0.2)",
|
128 |
+
"description": f"ไม่ทราบ ({label})"
|
129 |
+
}
|
130 |
|
131 |
def split_sentences(text: str) -> List[str]:
|
132 |
"""Enhanced sentence splitting with better Thai support"""
|
|
|
147 |
"""
|
148 |
|
149 |
def analyze_text(text: str, model_name: str) -> str:
|
150 |
+
"""Enhanced text analysis with comprehensive multi-model support"""
|
151 |
if not text or not text.strip():
|
152 |
return """
|
153 |
<div style="padding: 20px; background: rgba(248, 113, 113, 0.2); border-radius: 12px; border-left: 4px solid #f87171;">
|
|
|
193 |
</div>
|
194 |
"""]
|
195 |
|
196 |
+
# Initialize sentiment counting system
|
197 |
+
sentiment_counts = {category: 0 for category in SENTIMENT_CATEGORIES.keys()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
total_confidence = 0
|
199 |
sentence_results = []
|
200 |
+
unique_labels_found = set()
|
201 |
|
202 |
# Analyze each sentence
|
203 |
for i, sentence in enumerate(sentences, 1):
|
|
|
206 |
label = result['label']
|
207 |
score = result['score']
|
208 |
|
209 |
+
# Track unique labels for debugging
|
210 |
+
unique_labels_found.add(label)
|
211 |
+
|
212 |
label_info = get_label_info(label)
|
213 |
+
sentiment_type = label_info["sentiment"]
|
214 |
|
215 |
+
# Count sentiment
|
216 |
+
if sentiment_type in sentiment_counts:
|
217 |
+
sentiment_counts[sentiment_type] += 1
|
218 |
else:
|
219 |
+
sentiment_counts["unknown"] += 1
|
220 |
|
221 |
total_confidence += score
|
222 |
|
|
|
225 |
'sentence': sentence,
|
226 |
'label_info': label_info,
|
227 |
'score': score,
|
228 |
+
'index': i,
|
229 |
+
'raw_label': label
|
230 |
})
|
231 |
|
232 |
except Exception as e:
|
|
|
269 |
<span style="background: {label_info['color']}; color: #f8fafc; padding: 4px 12px; border-radius: 20px; font-size: 12px; font-weight: 600; text-transform: uppercase;">
|
270 |
{label_info['description']}
|
271 |
</span>
|
272 |
+
<span style="color: #64748b; font-size: 12px; background: #1e293b; padding: 2px 8px; border-radius: 10px;">
|
273 |
+
{result['raw_label']}
|
274 |
+
</span>
|
275 |
<span style="color: #94a3b8; font-size: 14px;">ประโยคที่ {result['index']}</span>
|
276 |
</div>
|
277 |
<p style="color: #f8fafc; margin: 0 0 12px 0; font-size: 16px; line-height: 1.5;">
|
|
|
288 |
total_sentences = len(sentences)
|
289 |
avg_confidence = total_confidence / total_sentences if total_sentences > 0 else 0
|
290 |
|
291 |
+
# Create chart data for summary (only show categories with counts > 0 or important ones)
|
292 |
chart_items = []
|
293 |
+
sorted_categories = sorted(
|
294 |
+
[(k, v, sentiment_counts[k]) for k, v in SENTIMENT_CATEGORIES.items()],
|
295 |
+
key=lambda x: x[1]["order"]
|
296 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
for sentiment_key, sentiment_info, count in sorted_categories:
|
299 |
+
if count == 0 and sentiment_key == "unknown":
|
300 |
+
continue # Skip unknown if no unknown sentiments
|
301 |
+
|
302 |
+
percentage = (count / total_sentences) * 100 if total_sentences > 0 else 0
|
|
|
|
|
|
|
|
|
303 |
|
|
|
|
|
|
|
|
|
304 |
chart_items.append(f"""
|
305 |
<div style="display: flex; align-items: center; gap: 12px; padding: 12px; background: rgba(59, 130, 246, 0.1); border-radius: 8px;">
|
306 |
+
<span style="font-size: 24px;">{sentiment_info['emoji']}</span>
|
307 |
<div style="flex: 1;">
|
308 |
+
<div style="font-weight: 600; color: #f8fafc;">{sentiment_info['name']}</div>
|
309 |
<div style="color: #94a3b8; font-size: 14px;">{count} ประโยค ({percentage:.1f}%)</div>
|
310 |
</div>
|
311 |
<div style="width: 60px; height: 6px; background: #334155; border-radius: 3px; overflow: hidden;">
|
312 |
+
<div style="width: {percentage}%; height: 100%; background: {sentiment_info['color']}; transition: all 0.3s ease;"></div>
|
313 |
</div>
|
314 |
</div>
|
315 |
""")
|
316 |
|
317 |
+
# Debug information showing found labels
|
318 |
+
debug_labels = ", ".join(sorted(unique_labels_found))
|
319 |
+
|
320 |
html_parts.append(f"""
|
321 |
<div style="padding: 24px; background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%);">
|
322 |
<h3 style="color: #f8fafc; margin: 0 0 20px 0; font-size: 20px; font-weight: 700; display: flex; align-items: center; gap: 8px;">
|
|
|
335 |
</div>
|
336 |
</div>
|
337 |
|
338 |
+
<div style="display: grid; gap: 8px; margin-bottom: 16px;">
|
339 |
{"".join(chart_items)}
|
340 |
</div>
|
341 |
+
|
342 |
+
<div style="background: #1e293b; padding: 12px; border-radius: 8px; border-left: 4px solid #60a5fa;">
|
343 |
+
<div style="color: #60a5fa; font-size: 12px; font-weight: 600; margin-bottom: 4px;">🔍 Labels ที่พบในโมเดลนี้:</div>
|
344 |
+
<div style="color: #94a3b8; font-size: 12px; font-family: monospace;">{debug_labels}</div>
|
345 |
+
</div>
|
346 |
</div>
|
347 |
""")
|
348 |
|
|
|
483 |
with gr.Row():
|
484 |
gr.HTML("""
|
485 |
<div class='main-uxui-header'>
|
486 |
+
<h1>Thai Sentiment Analysis (Multi-Model)</h1>
|
487 |
+
<p>วิเคราะห์ความรู้สึกภาษาไทย/อังกฤษ รองรับหลายโมเดล | Enhanced Multi-Label Support</p>
|
488 |
</div>
|
489 |
""")
|
490 |
with gr.Row():
|
|
|
512 |
["เศร้ามากเลยวันนี้ งานเยอะเกินไป"],
|
513 |
["อาหารอร่อยดี แต่บริการช้ามาก"],
|
514 |
["คุณคิดอย่างไรกับเศรษฐกิจไทย?"],
|
515 |
+
["I love this product! It's amazing and perfect!"],
|
516 |
+
["This is the worst experience I've ever had. Absolutely terrible!"],
|
517 |
+
["The weather is okay today, nothing special."],
|
518 |
+
["What do you think about this new technology?"]
|
519 |
],
|
520 |
inputs=input_box,
|
521 |
label="ตัวอย่างข้อความ",
|
|
|
524 |
gr.HTML("""
|
525 |
<div class='main-uxui-legend'>
|
526 |
<div class='main-uxui-section-title'>
|
527 |
+
<span>🗂️</span> คำอธิบายผลลัพธ์ (รองรับ Label หลายรูปแบบ)
|
528 |
</div>
|
529 |
<div class='legend-row'>
|
530 |
+
<div class='legend-item'><strong>😡 เชิงลบมาก</strong><br><small>Very Negative<br>Labels: 5, LABEL_5, VERY_NEGATIVE</small></div>
|
531 |
+
<div class='legend-item'><strong>😢 เชิงลบ</strong><br><small>Negative<br>Labels: 0, LABEL_0, NEGATIVE</small></div>
|
532 |
+
<div class='legend-item'><strong>😐 เป็นกลาง</strong><br><small>Neutral<br>Labels: 1, LABEL_1, NEUTRAL</small></div>
|
533 |
+
<div class='legend-item'><strong>😊 เชิงบวก</strong><br><small>Positive<br>Labels: 2, LABEL_2, POSITIVE</small></div>
|
534 |
+
<div class='legend-item'><strong>🤩 เชิงบวกมาก</strong><br><small>Very Positive<br>Labels: 3, LABEL_3, VERY_POSITIVE</small></div>
|
535 |
+
<div class='legend-item'><strong>🤔 คำถาม</strong><br><small>Question<br>Labels: 4, LABEL_4, QUESTION</small></div>
|
536 |
+
</div>
|
537 |
+
<div style="margin-top: 16px; padding: 12px; background: rgba(96, 165, 250, 0.1); border-radius: 8px; border-left: 4px solid #60a5fa;">
|
538 |
+
<div style="color: #60a5fa; font-weight: 600; margin-bottom: 8px;">✨ คุณสมบัติใหม่:</div>
|
539 |
+
<ul style="color: #94a3b8; font-size: 14px; margin: 0; padding-left: 20px;">
|
540 |
+
<li>รองรับ Label หลายรูปแบบ (LABEL_X, ตัวเลข, ข้อความ)</li>
|
541 |
+
<li>แสดง Label ดิบที่โมเดลส่งออกมา</li>
|
542 |
+
<li>ระบบ Fallback สำหรับ Label ที่ไม่รู้จัก</li>
|
543 |
+
<li>Debug information แสดง Label ที่พบ</li>
|
544 |
+
<li>การนับและสรุปผลที่แม่นยำขึ้น</li>
|
545 |
+
</ul>
|
546 |
</div>
|
547 |
</div>
|
548 |
""")
|