File size: 2,164 Bytes
ade7754
 
 
9f45f9d
 
 
 
 
 
 
 
 
 
 
 
 
238b0d2
f114c57
d45a3dd
f114c57
30821be
9f45f9d
aff682b
30821be
9f45f9d
aff682b
45a301c
f63a516
6430282
f63a516
 
9f45f9d
6430282
 
f881630
9f45f9d
6430282
 
 
9f45f9d
6430282
 
 
 
acabee9
 
6430282
 
 
9f45f9d
 
acabee9
 
 
9f45f9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
from transformers import pipeline

# 定义模型配置选项
size_lst = ["-base", "-large"]
cased_lst = ["-cased", "-uncased"]
fpretrain_lst = ["None", "-scsmall", "-scmedium", "-sclarge"]
finetune_lst = ["-squad", "-scqa1", "-scqa2"]

# 为每个选项创建下拉菜单
size = st.selectbox("Choose a model size:", size_lst)
cased = st.selectbox("Whether distinguish upper and lowercase letters:", cased_lst)
fpretrain = st.selectbox("Further pretrained on a solar cell corpus:", fpretrain_lst)
finetune = st.selectbox("Finetuned on a QA dataset:", finetune_lst)

# 根据选择构建模型名称
if fpretrain == "None":
    model = "".join(["ZongqianLi/bert", size, cased, finetune])
else:
    model = "".join(["ZongqianLi/bert", size, cased, fpretrain, finetune])

# 显示用户选择的模型
st.write(f"Your selected model: {model}")

# 加载问答模型
pipe = pipeline("question-answering", model=model)

# 设置默认的问题和上下文
default_property = "FF"
default_context = "The referential DSSC with Pt CE was also measured under the same conditions, which yields η of 6.66% (Voc= 0.78 V, Jsc= 13.0 mA cm−2, FF = 65.9%)."

# 获取用户输入的问题和上下文
property = st.text_input("Enter your the name of the property: ", value=default_property)
context = st.text_area("Enter the context: ", value=default_context, height=300)

# 添加一个按钮,用户点击后执行问答
if st.button('Extract the property'):
    question_1 = f"What is the value of {property}?"
    if context and question_1:
        out = pipe({
            'question': question_1,
            'context': context
        })
        value = out["answer"]
        st.write(f"First-turn question: {question_1}")
        st.write(f"First-turn answer: {value}")
        question_2 = f"What material has {property} of {value}?"
        out = pipe({
            'question': question_2,
            'context': context
        })
        material = out["answer"]
        st.write(f"Second-turn question: {question_2}")
        st.write(f"First-turn answer: {material}")
    else:
        st.write("Please enter both a question and context.")