Zuhyer999's picture
Update app.py
56b51dd verified
raw
history blame
1.43 kB
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import gradio as gr
# Interchanged class order: Cancer is now index 0
class_names = ["Cancer", "Normal", "Malignant"]
# Preprocessing for CT scan
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Load model architecture
def get_model():
model = models.vgg16(pretrained=False)
model.classifier[6] = nn.Linear(4096, 3)
return model
# Load model weights
model = get_model()
model.load_state_dict(torch.load("distilled_vgg16.pth", map_location=torch.device("cpu")))
model.eval()
# Prediction function
def predict(img: Image.Image):
image = transform(img).unsqueeze(0)
with torch.no_grad():
outputs = model(image)
probs = torch.softmax(outputs, dim=1)[0]
pred_idx = torch.argmax(probs).item()
return f"Prediction: {class_names[pred_idx]}\nPlease consult a doctor for further diagnosis."
# Gradio UI
interface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(label="Diagnosis"),
title="Lung Cancer Detection (VGG16, PyTorch)",
description="Upload a CT scan image. This tool will predict if it is Cancer, Normal, or Malignant."
)
if __name__ == "__main__":
interface.launch()