Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -7,46 +7,45 @@ import os
|
|
7 |
from dotenv import load_dotenv
|
8 |
from huggingface_hub import InferenceClient
|
9 |
import numpy as np
|
10 |
-
import time
|
11 |
-
from tqdm import tqdm
|
12 |
-
#
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
# ---
|
19 |
|
20 |
# --- Configuration ---
|
21 |
-
DB_PATH = "./chroma_db"
|
22 |
-
COLLECTION_NAME = "libguides_content"
|
23 |
-
LOCAL_EMBEDDING_MODEL = 'BAAI/bge-m3' # Local model for
|
24 |
HF_GENERATION_MODEL = "google/gemma-3-27b-it" # HF model for generation
|
25 |
-
|
26 |
-
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
32 |
# ---
|
33 |
|
34 |
# Setup logging
|
35 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', stream=sys.stderr)
|
36 |
|
37 |
# --- Load API Key and Initialize HF Generation Client ---
|
38 |
-
# Wrap client initialization in a cached function to avoid re-initializing on every interaction
|
39 |
@st.cache_resource
|
40 |
def initialize_hf_client():
|
41 |
generation_client_instance = None
|
42 |
try:
|
43 |
load_dotenv()
|
44 |
-
# Read HF_TOKEN from environment variable first (for Spaces secrets), fallback to .env
|
45 |
HF_TOKEN = os.getenv('HF_TOKEN') or os.getenv('HUGGING_FACE_HUB_TOKEN')
|
46 |
if not HF_TOKEN:
|
47 |
-
logging.error("HF_TOKEN or HUGGING_FACE_HUB_TOKEN not found
|
48 |
-
st.error("🔴 Hugging Face Token not found. Please set it as a Space secret named HF_TOKEN or in the .env file
|
49 |
-
st.stop()
|
50 |
else:
|
51 |
generation_client_instance = InferenceClient(model=HF_GENERATION_MODEL, token=HF_TOKEN)
|
52 |
logging.info(f"Initialized HF Inference Client for generation ({HF_GENERATION_MODEL}).")
|
@@ -54,18 +53,16 @@ def initialize_hf_client():
|
|
54 |
except Exception as e:
|
55 |
logging.exception("Error initializing Hugging Face Inference Client for generation.")
|
56 |
st.error(f"🔴 Error initializing Hugging Face Inference Client: {e}")
|
57 |
-
st.stop()
|
58 |
-
return None
|
59 |
|
60 |
generation_client = initialize_hf_client()
|
61 |
# ---
|
62 |
|
63 |
-
# --- Embedding
|
64 |
-
# This part is similar to embed_and_store_local_chroma_ef.py
|
65 |
-
# Cache the embedding function definition as well
|
66 |
@st.cache_resource
|
67 |
-
def
|
68 |
-
logging.info(f"
|
69 |
try:
|
70 |
import torch
|
71 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
@@ -73,175 +70,134 @@ def get_embedding_function():
|
|
73 |
except ImportError:
|
74 |
device = 'cpu'
|
75 |
logging.info("Torch not found, using device: cpu")
|
76 |
-
|
77 |
try:
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
trust_remote_code=True
|
82 |
-
)
|
83 |
-
logging.info("Embedding function defined.")
|
84 |
-
return ef
|
85 |
except Exception as e:
|
86 |
-
st.error(f"Failed to
|
87 |
-
logging.exception(f"Failed to
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
-
#
|
92 |
-
# Use a simple flag file to check if initialization was done in this session/container lifetime
|
93 |
-
INIT_FLAG_FILE = os.path.join(DB_PATH, ".initialized")
|
94 |
-
|
95 |
-
def initialize_database():
|
96 |
-
# Check if DB exists and is initialized (using flag file for ephemeral systems)
|
97 |
-
if os.path.exists(INIT_FLAG_FILE):
|
98 |
-
logging.info("Initialization flag file found. Assuming DB is ready.")
|
99 |
-
return True
|
100 |
-
|
101 |
-
# Check if DB path exists but maybe wasn't fully initialized
|
102 |
-
db_exists = os.path.exists(DB_PATH) and os.listdir(DB_PATH)
|
103 |
-
|
104 |
-
if db_exists and not os.path.exists(INIT_FLAG_FILE):
|
105 |
-
logging.warning("DB path exists but initialization flag not found. Re-initializing.")
|
106 |
-
# Optionally, could try loading collection here and return True if successful
|
107 |
-
# For simplicity, we'll just re-initialize fully if flag is missing
|
108 |
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
|
111 |
|
112 |
try:
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
if
|
145 |
-
st.error("No valid
|
146 |
-
logging.error("
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
try:
|
154 |
chroma_client.delete_collection(name=COLLECTION_NAME)
|
155 |
-
|
156 |
-
except Exception: pass
|
157 |
|
158 |
-
logging.info(f"Creating
|
|
|
159 |
collection = chroma_client.create_collection(
|
160 |
name=COLLECTION_NAME,
|
161 |
-
|
162 |
-
metadata={"hnsw:space": "cosine"}
|
163 |
)
|
164 |
-
logging.info(f"Created new collection '{COLLECTION_NAME}'.")
|
165 |
|
166 |
-
|
167 |
-
logging.info(f"Adding documents to ChromaDB (ChromaDB will embed)...")
|
168 |
start_time = time.time()
|
169 |
-
total_added = 0
|
170 |
error_count = 0
|
171 |
-
num_batches = (len(
|
172 |
-
progress_bar = st.progress(0, text="
|
173 |
|
174 |
for i in range(num_batches):
|
175 |
-
start_idx = i *
|
176 |
-
end_idx = start_idx +
|
177 |
-
|
178 |
-
batch_metadatas = metadatas[start_idx:end_idx]
|
179 |
-
batch_ids = ids[start_idx:end_idx]
|
180 |
|
181 |
try:
|
182 |
-
collection.add(
|
183 |
-
|
|
|
|
|
|
|
|
|
184 |
except Exception as e:
|
185 |
-
logging.error(f"Error adding batch
|
186 |
error_count += 1
|
187 |
-
progress_bar.progress((i + 1) / num_batches, text=f"
|
188 |
|
189 |
progress_bar.empty()
|
190 |
end_time = time.time()
|
191 |
-
logging.info(f"Finished
|
192 |
-
logging.info(f"Successfully added {total_added} documents to ChromaDB.")
|
193 |
if error_count > 0:
|
194 |
-
logging.warning(f"Encountered errors in {error_count} batches during add.")
|
195 |
-
logging.info(f"Document adding took {end_time - start_time:.2f} seconds.")
|
196 |
-
|
197 |
-
# Create flag file on success
|
198 |
-
os.makedirs(DB_PATH, exist_ok=True)
|
199 |
-
with open(INIT_FLAG_FILE, 'w') as f:
|
200 |
-
f.write('initialized')
|
201 |
-
|
202 |
-
st.success(f"Database initialized successfully with {total_added} documents.")
|
203 |
-
return True
|
204 |
|
205 |
-
|
206 |
-
st.error(f"Failed to initialize database: {e}")
|
207 |
-
logging.exception(f"An unexpected error occurred during database initialization: {e}")
|
208 |
-
return False
|
209 |
-
|
210 |
-
|
211 |
-
# --- Caching Functions ---
|
212 |
-
# Modified to depend on successful DB initialization
|
213 |
-
@st.cache_resource
|
214 |
-
def load_chromadb_collection():
|
215 |
-
if not initialize_database():
|
216 |
-
st.error("Database initialization failed. Cannot load collection.")
|
217 |
-
st.stop()
|
218 |
-
|
219 |
-
logging.info(f"Attempting to load ChromaDB collection: {COLLECTION_NAME}")
|
220 |
-
try:
|
221 |
-
_client = chromadb.PersistentClient(path=DB_PATH)
|
222 |
-
collection = _client.get_collection(name=COLLECTION_NAME)
|
223 |
-
logging.info(f"Collection '{COLLECTION_NAME}' loaded successfully.")
|
224 |
return collection
|
|
|
|
|
|
|
|
|
|
|
225 |
except Exception as e:
|
226 |
-
st.error(f"Failed to load
|
227 |
-
logging.
|
228 |
-
|
|
|
229 |
|
|
|
|
|
|
|
230 |
|
231 |
# --- Helper Functions ---
|
232 |
def query_hf_inference(prompt, client_instance=None, model_name=HF_GENERATION_MODEL):
|
233 |
"""Sends the prompt to the HF Inference API using the initialized client."""
|
234 |
if not client_instance:
|
235 |
client_instance = generation_client
|
236 |
-
|
237 |
if not client_instance:
|
238 |
logging.error("HF Inference client not initialized in query_hf_inference.")
|
239 |
return "Error: HF Inference client failed to initialize."
|
240 |
try:
|
241 |
-
response_text = client_instance.text_generation(
|
242 |
-
prompt,
|
243 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
244 |
-
)
|
245 |
if not response_text:
|
246 |
logging.warning(f"Received empty response from HF Inference API ({model_name}) for prompt: {prompt[:100]}...")
|
247 |
return "Error: Received empty response from generation model."
|
@@ -271,7 +227,6 @@ commencement schedule
|
|
271 |
|
272 |
User Query: "{query}"
|
273 |
Output:"""
|
274 |
-
|
275 |
logging.info(f"Generating query variations for: {query} using {model_name}")
|
276 |
try:
|
277 |
response = llm_func(prompt, model_name=model_name)
|
@@ -304,18 +259,16 @@ Answer:"""
|
|
304 |
return prompt
|
305 |
|
306 |
# --- Streamlit App UI ---
|
307 |
-
|
308 |
-
st.title("📚 Ask the Library Guides (
|
309 |
-
|
310 |
-
# Load resources (this now includes the initialization check)
|
311 |
-
collection = load_chromadb_collection()
|
312 |
|
313 |
# User input (only proceed if collection loaded)
|
314 |
if collection:
|
315 |
query = st.text_area("Enter your question:", height=100)
|
316 |
else:
|
317 |
-
|
318 |
-
st.
|
|
|
319 |
|
320 |
# --- Routing Prompt Definition ---
|
321 |
ROUTING_PROMPT_TEMPLATE = """You are a query routing assistant for a library chatbot. Your task is to classify the user's query into one of the following categories based on its intent:
|
@@ -387,22 +340,7 @@ if collection and st.button("Ask"):
|
|
387 |
if route_decision == "HOURS":
|
388 |
st.info("You can find the current library hours here: [https://gc-cuny.libcal.com/hours](https://gc-cuny.libcal.com/hours)")
|
389 |
st.stop()
|
390 |
-
|
391 |
-
catalog_url = "https://cuny-gc.primo.exlibrisgroup.com/discovery/search?vid=01CUNY_GC:CUNY_GC"
|
392 |
-
st.info(f"To check for specific books, journals, or articles, please search the library catalog directly here: [{catalog_url}]({catalog_url})")
|
393 |
-
st.stop()
|
394 |
-
elif route_decision == "ILL_REQUEST":
|
395 |
-
ill_url = "https://ezproxy.gc.cuny.edu/login?url=https://gc-cuny.illiad.oclc.org/illiad/illiad.dll"
|
396 |
-
st.info(f"For Interlibrary Loan requests or questions, please use the ILL system here: [{ill_url}]({ill_url})")
|
397 |
-
st.stop()
|
398 |
-
elif route_decision == "ACCOUNT_INFO":
|
399 |
-
account_url = "https://cuny-gc.primo.exlibrisgroup.com/discovery/account?vid=01CUNY_GC:CUNY_GC§ion=overview"
|
400 |
-
st.info(f"To manage your library account (renewals, fines, etc.), please log in here: [{account_url}]({account_url})")
|
401 |
-
st.stop()
|
402 |
-
elif route_decision == "TECH_SUPPORT":
|
403 |
-
support_url = "https://docs.google.com/forms/d/e/1FAIpQLSdF3a-Au-jIYRDN-mxU3MpZSANQJWFx0VEN2if01iRucIXsZA/viewform"
|
404 |
-
st.info(f"To report a problem with accessing e-resources or other technical issues, please use this form: [{support_url}]({support_url})")
|
405 |
-
st.stop()
|
406 |
elif route_decision == "EVENTS_CALENDAR":
|
407 |
events_url = "https://gc-cuny.libcal.com/calendar?cid=15537&t=d&d=0000-00-00&cal=15537&inc=0"
|
408 |
st.info(f"You can find information about upcoming library events and workshops on the calendar here: [{events_url}]({events_url})")
|
@@ -417,16 +355,26 @@ if collection and st.button("Ask"):
|
|
417 |
all_queries = [query] + query_variations
|
418 |
logging.info(f"--- DIAGNOSTIC: All queries for search: {all_queries}")
|
419 |
|
420 |
-
# 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
vector_results_ids = []
|
422 |
context_chunks = []
|
423 |
context_metadata_list = []
|
424 |
|
425 |
try:
|
426 |
-
logging.info(f"Performing vector search for {len(
|
427 |
-
# Query ChromaDB using
|
428 |
vector_results = collection.query(
|
429 |
-
|
430 |
n_results=INITIAL_N_RESULTS,
|
431 |
include=['documents', 'metadatas', 'distances']
|
432 |
)
|
@@ -491,7 +439,7 @@ if collection and st.button("Ask"):
|
|
491 |
logging.exception("Vector search/selection failed.")
|
492 |
context_chunks = []
|
493 |
|
494 |
-
#
|
495 |
if route_decision == "RESEARCH_QUERY":
|
496 |
logging.info("Using RESEARCH_QUERY prompt template.")
|
497 |
final_prompt = RESEARCH_QUERY_PROMPT_TEMPLATE.format(context_str="\n\n".join(context_chunks), query=query)
|
@@ -499,14 +447,14 @@ if collection and st.button("Ask"):
|
|
499 |
logging.info("Using standard RAG prompt template.")
|
500 |
final_prompt = generate_prompt(query, context_chunks)
|
501 |
|
502 |
-
#
|
503 |
logging.info(f"Sending final prompt to HF Inference API model: {HF_GENERATION_MODEL}...")
|
504 |
answer = query_hf_inference(final_prompt)
|
505 |
logging.info(f"Received answer from HF Inference API: {answer[:100]}...")
|
506 |
if answer.startswith("Error:"):
|
507 |
st.error(f"Answer generation failed: {answer}")
|
508 |
|
509 |
-
#
|
510 |
st.subheader("Answer:")
|
511 |
st.markdown(answer)
|
512 |
|
@@ -527,13 +475,14 @@ if collection and st.button("Ask"):
|
|
527 |
st.sidebar.header("How to Use")
|
528 |
st.sidebar.info(
|
529 |
"1. Ensure your `HUGGING_FACE_HUB_TOKEN` is correctly set as a Space secret (`HF_TOKEN`) or in the `.env` file.\n"
|
530 |
-
f"2. The app will
|
|
|
531 |
"3. Enter your question in the text area.\n"
|
532 |
"4. Click 'Ask'."
|
533 |
)
|
534 |
st.sidebar.header("Configuration")
|
535 |
-
st.sidebar.markdown(f"**Embedding:**
|
536 |
st.sidebar.markdown(f"**LLM (HF API):** `{HF_GENERATION_MODEL}`")
|
537 |
-
st.sidebar.markdown(f"**ChromaDB Collection:** `{COLLECTION_NAME}`")
|
538 |
st.sidebar.markdown(f"**Retrieval Mode:** Vector Search Only")
|
539 |
st.sidebar.markdown(f"**Final Unique Chunks:** `{TOP_K}` (from initial `{INITIAL_N_RESULTS}` vector search)")
|
|
|
7 |
from dotenv import load_dotenv
|
8 |
from huggingface_hub import InferenceClient
|
9 |
import numpy as np
|
10 |
+
import time
|
11 |
+
from tqdm import tqdm
|
12 |
+
# Need datasets, pandas, sentence-transformers
|
13 |
+
from datasets import load_dataset, DatasetDict, Dataset
|
14 |
+
import pandas as pd
|
15 |
+
from sentence_transformers import SentenceTransformer
|
16 |
+
# Keep ChromaDB embedding function import only if needed elsewhere, otherwise remove
|
17 |
+
# import chromadb.utils.embedding_functions as embedding_functions
|
|
|
18 |
|
19 |
# --- Configuration ---
|
20 |
+
# DB_PATH = "./chroma_db" # No longer using persistent path for app runtime
|
21 |
+
COLLECTION_NAME = "libguides_content"
|
22 |
+
LOCAL_EMBEDDING_MODEL = 'BAAI/bge-m3' # Local model for QUERY embedding
|
23 |
HF_GENERATION_MODEL = "google/gemma-3-27b-it" # HF model for generation
|
24 |
+
HF_DATASET_ID = "Zwounds/Libguides_Embeddings" # Your HF Dataset ID
|
25 |
+
PARQUET_FILENAME = "libguides_embeddings.parquet" # Filename within the dataset
|
26 |
+
# INPUT_FILE = 'extracted_content.jsonl' # No longer needed for app runtime
|
27 |
+
# EMBEDDING_BATCH_SIZE = 100 # Batch size for adding docs to ChromaDB (now done during load)
|
28 |
+
ADD_BATCH_SIZE = 500 # Batch size for adding to in-memory Chroma
|
29 |
+
TOP_K = 10
|
30 |
+
INITIAL_N_RESULTS = 50
|
31 |
+
API_RETRY_DELAY = 2
|
32 |
+
MAX_NEW_TOKENS = 512
|
33 |
# ---
|
34 |
|
35 |
# Setup logging
|
36 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', stream=sys.stderr)
|
37 |
|
38 |
# --- Load API Key and Initialize HF Generation Client ---
|
|
|
39 |
@st.cache_resource
|
40 |
def initialize_hf_client():
|
41 |
generation_client_instance = None
|
42 |
try:
|
43 |
load_dotenv()
|
|
|
44 |
HF_TOKEN = os.getenv('HF_TOKEN') or os.getenv('HUGGING_FACE_HUB_TOKEN')
|
45 |
if not HF_TOKEN:
|
46 |
+
logging.error("HF_TOKEN or HUGGING_FACE_HUB_TOKEN not found.")
|
47 |
+
st.error("🔴 Hugging Face Token not found. Please set it as a Space secret named HF_TOKEN or in the .env file.")
|
48 |
+
st.stop()
|
49 |
else:
|
50 |
generation_client_instance = InferenceClient(model=HF_GENERATION_MODEL, token=HF_TOKEN)
|
51 |
logging.info(f"Initialized HF Inference Client for generation ({HF_GENERATION_MODEL}).")
|
|
|
53 |
except Exception as e:
|
54 |
logging.exception("Error initializing Hugging Face Inference Client for generation.")
|
55 |
st.error(f"🔴 Error initializing Hugging Face Inference Client: {e}")
|
56 |
+
st.stop()
|
57 |
+
return None
|
58 |
|
59 |
generation_client = initialize_hf_client()
|
60 |
# ---
|
61 |
|
62 |
+
# --- Load Local Embedding Model (for Queries) ---
|
|
|
|
|
63 |
@st.cache_resource
|
64 |
+
def load_local_embedding_model():
|
65 |
+
logging.info(f"Loading local embedding model for queries: {LOCAL_EMBEDDING_MODEL}")
|
66 |
try:
|
67 |
import torch
|
68 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
70 |
except ImportError:
|
71 |
device = 'cpu'
|
72 |
logging.info("Torch not found, using device: cpu")
|
|
|
73 |
try:
|
74 |
+
model = SentenceTransformer(LOCAL_EMBEDDING_MODEL, device=device, trust_remote_code=True)
|
75 |
+
logging.info("Local embedding model loaded successfully.")
|
76 |
+
return model
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
+
st.error(f"Failed to load local embedding model ({LOCAL_EMBEDDING_MODEL}): {e}")
|
79 |
+
logging.exception(f"Failed to load local embedding model: {e}")
|
80 |
+
st.stop()
|
81 |
+
return None
|
82 |
|
83 |
+
embedding_model = load_local_embedding_model()
|
84 |
+
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# --- Load Data from HF Dataset and Populate In-Memory ChromaDB ---
|
87 |
+
@st.cache_resource
|
88 |
+
def load_data_and_setup_chroma():
|
89 |
+
if not generation_client or not embedding_model:
|
90 |
+
st.error("Required clients/models not initialized. Cannot proceed.")
|
91 |
+
st.stop()
|
92 |
|
93 |
try:
|
94 |
+
logging.info(f"Loading dataset '{HF_DATASET_ID}' from Hugging Face Hub...")
|
95 |
+
# Load the dataset - might need split='train' if applicable
|
96 |
+
# Handle potential errors during download/load
|
97 |
+
try:
|
98 |
+
dataset = load_dataset(HF_DATASET_ID, split='train') # Assuming default split is 'train'
|
99 |
+
except Exception as load_e:
|
100 |
+
logging.error(f"Failed to load dataset '{HF_DATASET_ID}': {load_e}")
|
101 |
+
st.error(f"Failed to load dataset '{HF_DATASET_ID}'. Check dataset ID and availability.")
|
102 |
+
st.stop()
|
103 |
+
|
104 |
+
logging.info("Converting dataset to Pandas DataFrame...")
|
105 |
+
df = dataset.to_pandas()
|
106 |
+
logging.info(f"Dataset loaded into DataFrame with shape: {df.shape}")
|
107 |
+
|
108 |
+
# Verify required columns
|
109 |
+
required_cols = ['id', 'document', 'embedding', 'metadata']
|
110 |
+
if not all(col in df.columns for col in required_cols):
|
111 |
+
st.error(f"Dataset is missing required columns. Found: {df.columns}. Required: {required_cols}")
|
112 |
+
logging.error(f"Dataset missing required columns. Found: {df.columns}")
|
113 |
+
st.stop()
|
114 |
+
|
115 |
+
# Ensure embeddings are lists of floats (Parquet might store them efficiently)
|
116 |
+
# This might not be strictly necessary if ChromaDB handles numpy arrays, but safer to convert
|
117 |
+
logging.info("Ensuring embeddings are in list format...")
|
118 |
+
df['embedding'] = df['embedding'].apply(lambda x: list(map(float, x)) if isinstance(x, (np.ndarray, list)) else None)
|
119 |
+
# Drop rows where embedding conversion failed
|
120 |
+
initial_rows = len(df)
|
121 |
+
df.dropna(subset=['embedding'], inplace=True)
|
122 |
+
if len(df) < initial_rows:
|
123 |
+
logging.warning(f"Dropped {initial_rows - len(df)} rows due to invalid embedding format.")
|
124 |
+
|
125 |
+
if df.empty:
|
126 |
+
st.error("No valid data loaded from the dataset after processing embeddings.")
|
127 |
+
logging.error("DataFrame empty after embedding processing.")
|
128 |
+
st.stop()
|
129 |
+
|
130 |
+
logging.info("Initializing in-memory ChromaDB client...")
|
131 |
+
chroma_client = chromadb.Client() # In-memory client
|
132 |
+
|
133 |
+
# Delete collection if it somehow exists in memory (unlikely but safe)
|
134 |
try:
|
135 |
chroma_client.delete_collection(name=COLLECTION_NAME)
|
136 |
+
except: pass
|
|
|
137 |
|
138 |
+
logging.info(f"Creating in-memory collection: {COLLECTION_NAME}")
|
139 |
+
# Create collection WITHOUT embedding function - we provide pre-computed ones
|
140 |
collection = chroma_client.create_collection(
|
141 |
name=COLLECTION_NAME,
|
142 |
+
metadata={"hnsw:space": "cosine"} # Or dot if BGE prefers
|
|
|
143 |
)
|
|
|
144 |
|
145 |
+
logging.info(f"Adding {len(df)} documents to in-memory ChromaDB in batches of {ADD_BATCH_SIZE}...")
|
|
|
146 |
start_time = time.time()
|
|
|
147 |
error_count = 0
|
148 |
+
num_batches = (len(df) + ADD_BATCH_SIZE - 1) // ADD_BATCH_SIZE
|
149 |
+
progress_bar = st.progress(0, text="Loading embeddings into memory...")
|
150 |
|
151 |
for i in range(num_batches):
|
152 |
+
start_idx = i * ADD_BATCH_SIZE
|
153 |
+
end_idx = start_idx + ADD_BATCH_SIZE
|
154 |
+
batch_df = df.iloc[start_idx:end_idx]
|
|
|
|
|
155 |
|
156 |
try:
|
157 |
+
collection.add(
|
158 |
+
ids=batch_df['id'].tolist(),
|
159 |
+
embeddings=batch_df['embedding'].tolist(),
|
160 |
+
documents=batch_df['document'].tolist(),
|
161 |
+
metadatas=batch_df['metadata'].tolist()
|
162 |
+
)
|
163 |
except Exception as e:
|
164 |
+
logging.error(f"Error adding batch {i+1}/{num_batches} to in-memory Chroma: {e}")
|
165 |
error_count += 1
|
166 |
+
progress_bar.progress((i + 1) / num_batches, text=f"Loading embeddings... Batch {i+1}/{num_batches}")
|
167 |
|
168 |
progress_bar.empty()
|
169 |
end_time = time.time()
|
170 |
+
logging.info(f"Finished loading data into in-memory ChromaDB. Took {end_time - start_time:.2f} seconds.")
|
|
|
171 |
if error_count > 0:
|
172 |
+
logging.warning(f"Encountered errors in {error_count} batches during add to Chroma.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
st.success("Embeddings loaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
return collection
|
176 |
+
|
177 |
+
except ImportError as e:
|
178 |
+
st.error(f"ImportError: {e}. Required libraries might be missing (datasets, pandas, pyarrow). Check requirements.txt.")
|
179 |
+
logging.error(f"ImportError during dataset loading/Chroma setup: {e}")
|
180 |
+
st.stop()
|
181 |
except Exception as e:
|
182 |
+
st.error(f"Failed to load data and initialize ChromaDB: {e}")
|
183 |
+
logging.exception(f"An unexpected error occurred during data load/Chroma setup: {e}")
|
184 |
+
st.stop()
|
185 |
+
return None # Should not be reached
|
186 |
|
187 |
+
# --- Load data and collection ---
|
188 |
+
collection = load_data_and_setup_chroma()
|
189 |
+
# ---
|
190 |
|
191 |
# --- Helper Functions ---
|
192 |
def query_hf_inference(prompt, client_instance=None, model_name=HF_GENERATION_MODEL):
|
193 |
"""Sends the prompt to the HF Inference API using the initialized client."""
|
194 |
if not client_instance:
|
195 |
client_instance = generation_client
|
|
|
196 |
if not client_instance:
|
197 |
logging.error("HF Inference client not initialized in query_hf_inference.")
|
198 |
return "Error: HF Inference client failed to initialize."
|
199 |
try:
|
200 |
+
response_text = client_instance.text_generation(prompt, max_new_tokens=MAX_NEW_TOKENS)
|
|
|
|
|
|
|
201 |
if not response_text:
|
202 |
logging.warning(f"Received empty response from HF Inference API ({model_name}) for prompt: {prompt[:100]}...")
|
203 |
return "Error: Received empty response from generation model."
|
|
|
227 |
|
228 |
User Query: "{query}"
|
229 |
Output:"""
|
|
|
230 |
logging.info(f"Generating query variations for: {query} using {model_name}")
|
231 |
try:
|
232 |
response = llm_func(prompt, model_name=model_name)
|
|
|
259 |
return prompt
|
260 |
|
261 |
# --- Streamlit App UI ---
|
262 |
+
st.set_page_config(layout="wide")
|
263 |
+
st.title("📚 Ask the Library Guides (Dataset Embed + HF Gen)") # Updated title
|
|
|
|
|
|
|
264 |
|
265 |
# User input (only proceed if collection loaded)
|
266 |
if collection:
|
267 |
query = st.text_area("Enter your question:", height=100)
|
268 |
else:
|
269 |
+
# Error handled during load_data_and_setup_chroma
|
270 |
+
st.error("Application initialization failed. Cannot proceed.")
|
271 |
+
st.stop()
|
272 |
|
273 |
# --- Routing Prompt Definition ---
|
274 |
ROUTING_PROMPT_TEMPLATE = """You are a query routing assistant for a library chatbot. Your task is to classify the user's query into one of the following categories based on its intent:
|
|
|
340 |
if route_decision == "HOURS":
|
341 |
st.info("You can find the current library hours here: [https://gc-cuny.libcal.com/hours](https://gc-cuny.libcal.com/hours)")
|
342 |
st.stop()
|
343 |
+
# ... (other routes) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
elif route_decision == "EVENTS_CALENDAR":
|
345 |
events_url = "https://gc-cuny.libcal.com/calendar?cid=15537&t=d&d=0000-00-00&cal=15537&inc=0"
|
346 |
st.info(f"You can find information about upcoming library events and workshops on the calendar here: [{events_url}]({events_url})")
|
|
|
355 |
all_queries = [query] + query_variations
|
356 |
logging.info(f"--- DIAGNOSTIC: All queries for search: {all_queries}")
|
357 |
|
358 |
+
# 2. Embed Queries Locally
|
359 |
+
try:
|
360 |
+
logging.info(f"Generating query embeddings locally using {LOCAL_EMBEDDING_MODEL}...")
|
361 |
+
query_embeddings = embedding_model.encode(all_queries).tolist()
|
362 |
+
logging.info(f"Generated {len(query_embeddings)} query embeddings locally.")
|
363 |
+
except Exception as e:
|
364 |
+
st.error(f"Failed to embed query using local model: {e}")
|
365 |
+
logging.exception(f"Failed to embed query using local model: {e}")
|
366 |
+
st.stop()
|
367 |
+
|
368 |
+
# 3. Vector Search (using pre-computed query embeddings)
|
369 |
vector_results_ids = []
|
370 |
context_chunks = []
|
371 |
context_metadata_list = []
|
372 |
|
373 |
try:
|
374 |
+
logging.info(f"Performing vector search for {len(query_embeddings)} embeddings...")
|
375 |
+
# Query ChromaDB using the computed query_embeddings
|
376 |
vector_results = collection.query(
|
377 |
+
query_embeddings=query_embeddings, # Pass embeddings now
|
378 |
n_results=INITIAL_N_RESULTS,
|
379 |
include=['documents', 'metadatas', 'distances']
|
380 |
)
|
|
|
439 |
logging.exception("Vector search/selection failed.")
|
440 |
context_chunks = []
|
441 |
|
442 |
+
# 4. Generate Final Prompt based on Route
|
443 |
if route_decision == "RESEARCH_QUERY":
|
444 |
logging.info("Using RESEARCH_QUERY prompt template.")
|
445 |
final_prompt = RESEARCH_QUERY_PROMPT_TEMPLATE.format(context_str="\n\n".join(context_chunks), query=query)
|
|
|
447 |
logging.info("Using standard RAG prompt template.")
|
448 |
final_prompt = generate_prompt(query, context_chunks)
|
449 |
|
450 |
+
# 5. Query HF Inference API LLM
|
451 |
logging.info(f"Sending final prompt to HF Inference API model: {HF_GENERATION_MODEL}...")
|
452 |
answer = query_hf_inference(final_prompt)
|
453 |
logging.info(f"Received answer from HF Inference API: {answer[:100]}...")
|
454 |
if answer.startswith("Error:"):
|
455 |
st.error(f"Answer generation failed: {answer}")
|
456 |
|
457 |
+
# 6. Display results
|
458 |
st.subheader("Answer:")
|
459 |
st.markdown(answer)
|
460 |
|
|
|
475 |
st.sidebar.header("How to Use")
|
476 |
st.sidebar.info(
|
477 |
"1. Ensure your `HUGGING_FACE_HUB_TOKEN` is correctly set as a Space secret (`HF_TOKEN`) or in the `.env` file.\n"
|
478 |
+
f"2. The app will load pre-computed embeddings from the HF Dataset (`{HF_DATASET_ID}`).\n"
|
479 |
+
" (Ensure the dataset was created correctly using `export_chroma_to_parquet.py` and `upload_dataset_to_hf.py`)\n"
|
480 |
"3. Enter your question in the text area.\n"
|
481 |
"4. Click 'Ask'."
|
482 |
)
|
483 |
st.sidebar.header("Configuration")
|
484 |
+
st.sidebar.markdown(f"**Embedding:** Pre-computed (`{LOCAL_EMBEDDING_MODEL}` loaded from HF Dataset)")
|
485 |
st.sidebar.markdown(f"**LLM (HF API):** `{HF_GENERATION_MODEL}`")
|
486 |
+
st.sidebar.markdown(f"**ChromaDB Collection:** `{COLLECTION_NAME}` (In-Memory)")
|
487 |
st.sidebar.markdown(f"**Retrieval Mode:** Vector Search Only")
|
488 |
st.sidebar.markdown(f"**Final Unique Chunks:** `{TOP_K}` (from initial `{INITIAL_N_RESULTS}` vector search)")
|