a-ragab-h-m's picture
Update nets/decoder.py
0b32cc2 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
class ClassifierOutput(nn.Module):
def __init__(self, embedding_size, C=10, softmax_output=False):
super().__init__()
self.C = C
self.embedding_size = embedding_size
self.softmax_output = softmax_output
self.W_q = nn.Parameter(torch.Tensor(1, embedding_size, embedding_size))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, context, V_output):
batch_size = context.shape[0]
Q = torch.bmm(context, self.W_q.repeat(batch_size, 1, 1))
z = torch.bmm(Q, V_output.permute(0, 2, 1))
z = z / (self.embedding_size ** 0.5)
z = self.C * torch.tanh(z)
return F.softmax(z, dim=1) if self.softmax_output else z
class Attention(nn.Module):
def __init__(self, n_heads, input_dim, embed_dim=None, val_dim=None, key_dim=None):
super().__init__()
if val_dim is None:
assert embed_dim is not None
val_dim = embed_dim // n_heads
if key_dim is None:
key_dim = val_dim
self.n_heads = n_heads
self.input_dim = input_dim
self.embed_dim = embed_dim
self.val_dim = val_dim
self.key_dim = key_dim
self.norm_factor = 1 / math.sqrt(key_dim)
self.W_query = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim))
self.W_out = nn.Parameter(torch.Tensor(n_heads, key_dim, embed_dim))
self.init_parameters()
def init_parameters(self):
for param in self.parameters():
stdv = 1. / math.sqrt(param.size(-1))
param.data.uniform_(-stdv, stdv)
def forward(self, q, K, V, mask=None):
batch_size = K.size(1)
graph_size = K.size(2)
n_query = q.size(1)
qflat = q.contiguous().view(-1, self.input_dim)
shp_q = (self.n_heads, batch_size, n_query, -1)
Q = torch.matmul(qflat, self.W_query).view(shp_q)
compatibility = self.norm_factor * torch.matmul(Q, K.transpose(2, 3))
if mask is not None:
mask = mask.view(1, batch_size, n_query, graph_size).expand_as(compatibility)
compatibility = compatibility.masked_fill(mask, float('-inf'))
attn = F.softmax(compatibility, dim=-1)
attn = attn.masked_fill(torch.isnan(attn), 0)
heads = torch.matmul(attn, V)
heads_combined = heads.permute(1, 2, 0, 3).contiguous().view(batch_size, n_query, -1)
W_out_combined = self.W_out.permute(1, 0, 2).reshape(self.n_heads * self.key_dim, self.embed_dim)
out = torch.matmul(heads_combined, W_out_combined)
return out
class Decoder(nn.Module):
def __init__(self, num_heads, embedding_size, decoder_input_size, softmax_output=False, C=10):
super().__init__()
self.embedding_size = embedding_size
self.initial_embedding = nn.Linear(decoder_input_size - 1, embedding_size)
self.attention = Attention(n_heads=num_heads, input_dim=embedding_size, embed_dim=embedding_size)
self.classifier_output = ClassifierOutput(embedding_size=embedding_size, C=C, softmax_output=softmax_output)
def forward(self, decoder_input, projections, mask, *args, **kwargs):
mask = (mask == 0)
K = projections['K']
V = projections['V']
V_output = projections['V_output']
embedded_input = self.initial_embedding(decoder_input)
context = self.attention(embedded_input, K, V, mask)
output = self.classifier_output(context, V_output)
return output