Update run.py
Browse files
run.py
CHANGED
@@ -9,8 +9,7 @@ from torch.utils.data import DataLoader
|
|
9 |
import json
|
10 |
|
11 |
dir_path = os.path.dirname(os.path.realpath(__file__))
|
12 |
-
|
13 |
-
sys.path.append(q)
|
14 |
|
15 |
from nets.model import Model
|
16 |
from Actor.actor import Actor
|
@@ -21,32 +20,16 @@ from google_solver.google_model import evaluate_google_model
|
|
21 |
with open('params.json', 'r') as f:
|
22 |
params = json.load(f)
|
23 |
|
|
|
|
|
|
|
|
|
24 |
# Settings
|
25 |
device = params['device']
|
26 |
run_tests = params['run_tests']
|
27 |
save_results = params['save_results']
|
28 |
dataset_path = params['dataset_path']
|
29 |
|
30 |
-
# Create results directory
|
31 |
-
now = datetime.now()
|
32 |
-
dt_string = now.strftime("%d-%m-%y %H-%M-%S")
|
33 |
-
print('Current time: ' + dt_string + '\n')
|
34 |
-
|
35 |
-
if save_results:
|
36 |
-
results_dir = os.path.join(os.getcwd() , "results")
|
37 |
-
os.makedirs(results_dir, exist_ok=True)
|
38 |
-
|
39 |
-
experiment_path = os.path.join(results_dir, dt_string)
|
40 |
-
os.makedirs(experiment_path, exist_ok=True)
|
41 |
-
open(os.path.join(experiment_path, 'train_results.txt'), 'w').close()
|
42 |
-
open(os.path.join(experiment_path, 'test_results.txt'), 'w').close()
|
43 |
-
|
44 |
-
with open(os.path.join(experiment_path, 'params.json'), 'w') as f:
|
45 |
-
json.dump(params, f)
|
46 |
-
|
47 |
-
os.mkdir(os.path.join(experiment_path, 'problem_instances'))
|
48 |
-
|
49 |
-
|
50 |
# Dataset sizes
|
51 |
train_dataset_size = params['train_dataset_size']
|
52 |
validation_dataset_size = params['validation_dataset_size']
|
@@ -81,26 +64,14 @@ tot_google_scores = google_scores.sum().item()
|
|
81 |
input_size = validation_dataset.model_input_length()
|
82 |
|
83 |
# Models
|
84 |
-
model = Model(
|
85 |
-
|
86 |
-
|
87 |
-
decoder_input_size=params["decoder_input_size"]
|
88 |
-
)
|
89 |
-
actor = Actor(model=model, num_movers=num_movers,
|
90 |
-
num_neighbors_encoder=num_neighbors_encoder,
|
91 |
-
num_neighbors_action=num_neighbors_action,
|
92 |
-
device=device, normalize=False)
|
93 |
actor.train_mode()
|
94 |
|
95 |
-
baseline_model = Model(
|
96 |
-
|
97 |
-
|
98 |
-
decoder_input_size=params["decoder_input_size"]
|
99 |
-
)
|
100 |
-
baseline_actor = Actor(model=baseline_model, num_movers=num_movers,
|
101 |
-
num_neighbors_encoder=num_neighbors_encoder,
|
102 |
-
num_neighbors_action=num_neighbors_action,
|
103 |
-
device=device, normalize=False)
|
104 |
baseline_actor.greedy_search()
|
105 |
baseline_actor.load_state_dict(actor.state_dict())
|
106 |
|
@@ -151,7 +122,7 @@ for epoch in range(params['num_epochs']):
|
|
151 |
result = f"{epoch}, {i}, {actor_nn_ratio:.4f}, {actor_baseline_ratio:.4f}, {train_batch_record:.4f}"
|
152 |
print(result, flush=True)
|
153 |
if save_results:
|
154 |
-
with open(
|
155 |
f.write(result + '\n')
|
156 |
del batch
|
157 |
|
@@ -196,12 +167,9 @@ for epoch in range(params['num_epochs']):
|
|
196 |
ratio = tot_cost / tot_nn_cost
|
197 |
validation_record = min(validation_record, ratio)
|
198 |
|
199 |
-
if save_results:
|
200 |
-
torch.save(actor.state_dict(), os.path.join(experiment_path, 'model_state_dict.pt'))
|
201 |
-
torch.save(optimizer.state_dict(), os.path.join(experiment_path, 'optimizer_state_dict.pt'))
|
202 |
-
|
203 |
actor_google_ratio = tot_cost / tot_google_scores
|
204 |
print(f"\nTest results:\nActor/Google: {actor_google_ratio:.4f}, Actor/NN: {ratio:.4f}, Best NN Ratio: {validation_record:.4f}\n")
|
|
|
205 |
if save_results:
|
206 |
-
with open(
|
207 |
f.write(f"{epoch}, {actor_google_ratio:.4f}, {ratio:.4f}, {validation_record:.4f}\n")
|
|
|
9 |
import json
|
10 |
|
11 |
dir_path = os.path.dirname(os.path.realpath(__file__))
|
12 |
+
sys.path.append(os.path.join(dir_path, '..'))
|
|
|
13 |
|
14 |
from nets.model import Model
|
15 |
from Actor.actor import Actor
|
|
|
20 |
with open('params.json', 'r') as f:
|
21 |
params = json.load(f)
|
22 |
|
23 |
+
# Save params into a local file for tracking
|
24 |
+
with open('params_saved.json', 'w') as f:
|
25 |
+
json.dump(params, f)
|
26 |
+
|
27 |
# Settings
|
28 |
device = params['device']
|
29 |
run_tests = params['run_tests']
|
30 |
save_results = params['save_results']
|
31 |
dataset_path = params['dataset_path']
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Dataset sizes
|
34 |
train_dataset_size = params['train_dataset_size']
|
35 |
validation_dataset_size = params['validation_dataset_size']
|
|
|
64 |
input_size = validation_dataset.model_input_length()
|
65 |
|
66 |
# Models
|
67 |
+
model = Model(input_size=input_size, embedding_size=embedding_size, decoder_input_size=params["decoder_input_size"])
|
68 |
+
actor = Actor(model=model, num_movers=num_movers, num_neighbors_encoder=num_neighbors_encoder,
|
69 |
+
num_neighbors_action=num_neighbors_action, device=device, normalize=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
actor.train_mode()
|
71 |
|
72 |
+
baseline_model = Model(input_size=input_size, embedding_size=embedding_size, decoder_input_size=params["decoder_input_size"])
|
73 |
+
baseline_actor = Actor(model=baseline_model, num_movers=num_movers, num_neighbors_encoder=num_neighbors_encoder,
|
74 |
+
num_neighbors_action=num_neighbors_action, device=device, normalize=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
baseline_actor.greedy_search()
|
76 |
baseline_actor.load_state_dict(actor.state_dict())
|
77 |
|
|
|
122 |
result = f"{epoch}, {i}, {actor_nn_ratio:.4f}, {actor_baseline_ratio:.4f}, {train_batch_record:.4f}"
|
123 |
print(result, flush=True)
|
124 |
if save_results:
|
125 |
+
with open('train_results.txt', 'a') as f:
|
126 |
f.write(result + '\n')
|
127 |
del batch
|
128 |
|
|
|
167 |
ratio = tot_cost / tot_nn_cost
|
168 |
validation_record = min(validation_record, ratio)
|
169 |
|
|
|
|
|
|
|
|
|
170 |
actor_google_ratio = tot_cost / tot_google_scores
|
171 |
print(f"\nTest results:\nActor/Google: {actor_google_ratio:.4f}, Actor/NN: {ratio:.4f}, Best NN Ratio: {validation_record:.4f}\n")
|
172 |
+
|
173 |
if save_results:
|
174 |
+
with open('test_results.txt', 'a') as f:
|
175 |
f.write(f"{epoch}, {actor_google_ratio:.4f}, {ratio:.4f}, {validation_record:.4f}\n")
|