a-ragab-h-m commited on
Commit
177fa02
Β·
verified Β·
1 Parent(s): 9e1bb92

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -13
README.md CHANGED
@@ -1,24 +1,70 @@
1
  # πŸ† VRP Shanghai Transformer
2
 
3
- > Transformer-based Reinforcement Learning Model for Vehicle Routing Problem (VRP) with Time Windows,
4
- > trained and tested on the Shanghai delivery dataset.
 
 
 
 
 
 
 
 
5
 
6
  ---
7
 
8
- ## πŸš€ Project Description
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- This project implements a deep reinforcement learning (DRL) agent based on the
11
- **Transformer architecture** to solve the **Vehicle Routing Problem with Time Windows (VRPTW)**.
12
- The model is adapted from the paper [Attention, Learn to Solve Routing Problems!](https://arxiv.org/abs/1803.08475)
13
- and is tested on real-world delivery data from Shanghai.
14
 
15
- It leverages a combination of:
16
- - Transformer Encoder-Decoder architecture
17
- - Pointer Networks
18
- - Beam Search Decoding
19
- - OR-Tools for benchmarking
20
 
21
  ---
22
 
23
- ## πŸ—‚οΈ Project Structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
 
1
  # πŸ† VRP Shanghai Transformer
2
 
3
+ **VRP Shanghai Transformer** is a research-grade implementation of a Transformer-based Reinforcement Learning model
4
+ designed to solve the **Vehicle Routing Problem (VRP)** with time windows. The model architecture
5
+ and learning strategy are inspired by the paper:
6
+
7
+ > **"Attention, Learn to Solve Routing Problems!"**
8
+ > Kool, W., van Hoof, H., & Welling, M. (2019)
9
+ > [arXiv:1803.08475](https://arxiv.org/abs/1803.08475)
10
+
11
+ This project adapts the original implementation to support the
12
+ **Shanghai Delivery Dataset** and includes compatibility with **Google OR-Tools** for benchmarking.
13
 
14
  ---
15
 
16
+ ## πŸ“¦ Features
17
+
18
+ - Transformer-based Actor-Critic model for routing optimization.
19
+ - Multi-vehicle time window routing with dynamic constraints.
20
+ - Modular implementation with support for:
21
+ - Data batching and augmentation.
22
+ - Beam search and greedy decoding.
23
+ - Google OR-Tools as a baseline solver.
24
+ - Built-in dataset loader for the Shanghai delivery tasks.
25
+ - Easy deployment via Hugging Face Spaces (using Docker).
26
+
27
+ ---
28
 
29
+ ## πŸ”§ Tech Stack
 
 
 
30
 
31
+ - **PyTorch**: Core deep learning framework.
32
+ - **OR-Tools**: Baseline routing solver.
33
+ - **Docker**: Environment setup for reproducible training and inference.
34
+ - **Hugging Face Spaces**: Deployment and interactive testing.
 
35
 
36
  ---
37
 
38
+ ## πŸš€ Quick Start
39
+
40
+ ```bash
41
+ # Clone the repository
42
+ git clone https://github.com/your-org/vrp-shanghai-transformer.git
43
+ cd vrp-shanghai-transformer
44
+
45
+ # Run using Docker
46
+ docker build -t vrp-transformer .
47
+ docker run -it vrp-transformer
48
+
49
+ πŸ“ Project Structure
50
+
51
+ β”œβ”€β”€ Actor/ # Model components: Actor, Graph, Fleet
52
+ β”œβ”€β”€ google_solver/ # Google OR-Tools integration
53
+ β”œβ”€β”€ train_test_utils/ # Training loop, baseline evaluation
54
+ β”œβ”€β”€ utils/ # Helper functions (data manipulation, tensor ops)
55
+ β”œβ”€β”€ dataloader.py # Dataset loading logic
56
+ β”œβ”€β”€ build_data.py # Synthetic data generator
57
+ β”œβ”€β”€ README.md # This file
58
+
59
+
60
+ πŸ“š References
61
+
62
+ Kool, W., van Hoof, H., & Welling, M. (2019). Attention, Learn to Solve Routing Problems!
63
+ arXiv:1803.08475
64
+
65
+ Google OR-Tools: https://developers.google.com/optimization
66
+
67
+ Hugging Face Spaces configuration reference:
68
+ https://huggingface.co/docs/hub/spaces-config-reference
69
+
70