Create inference.py
Browse files- inference.py +69 -0
inference.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils.data import DataLoader
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
from nets.model import Model
|
7 |
+
from Actor.actor import Actor
|
8 |
+
from dataloader import VRP_Dataset
|
9 |
+
|
10 |
+
# --- تحميل الإعدادات ---
|
11 |
+
with open('/data/params_saved.json', 'r') as f:
|
12 |
+
params = json.load(f)
|
13 |
+
|
14 |
+
# --- تعيين الجهاز ---
|
15 |
+
device = params['device']
|
16 |
+
dataset_path = params['dataset_path']
|
17 |
+
input_size = None # سيتم تحديده بعد تحميل البيانات
|
18 |
+
|
19 |
+
# --- تحميل نموذج مدرب ---
|
20 |
+
model_path = "/data/model_state_dict.pt"
|
21 |
+
if not os.path.exists(model_path):
|
22 |
+
raise FileNotFoundError(f"Model not found at {model_path}")
|
23 |
+
|
24 |
+
# --- إعداد بيانات عشوائية للاختبار ---
|
25 |
+
inference_dataset = VRP_Dataset(
|
26 |
+
size=1,
|
27 |
+
num_nodes=params['num_nodes'],
|
28 |
+
num_depots=params['num_depots'],
|
29 |
+
path=dataset_path,
|
30 |
+
device=device
|
31 |
+
)
|
32 |
+
|
33 |
+
input_size = inference_dataset.model_input_length()
|
34 |
+
|
35 |
+
# --- تحميل النموذج ---
|
36 |
+
model = Model(
|
37 |
+
input_size=input_size,
|
38 |
+
embedding_size=params["embedding_size"],
|
39 |
+
decoder_input_size=params["decoder_input_size"]
|
40 |
+
)
|
41 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
42 |
+
|
43 |
+
# --- تهيئة الممثل (Actor) والـ NN Actor ---
|
44 |
+
actor = Actor(model=model,
|
45 |
+
num_movers=params['num_movers'],
|
46 |
+
num_neighbors_encoder=params['num_neighbors_encoder'],
|
47 |
+
num_neighbors_action=params['num_neighbors_action'],
|
48 |
+
device=device,
|
49 |
+
normalize=False)
|
50 |
+
actor.eval_mode()
|
51 |
+
|
52 |
+
nn_actor = Actor(model=None, num_movers=1, num_neighbors_action=1, device=device)
|
53 |
+
nn_actor.nearest_neighbors()
|
54 |
+
|
55 |
+
# --- تنفيذ الاستدلال على دفعة واحدة ---
|
56 |
+
dataloader = DataLoader(inference_dataset, batch_size=1, collate_fn=inference_dataset.collate)
|
57 |
+
for batch in dataloader:
|
58 |
+
with torch.no_grad():
|
59 |
+
actor.greedy_search()
|
60 |
+
actor_output = actor(batch)
|
61 |
+
total_time = actor_output['total_time'].item()
|
62 |
+
|
63 |
+
nn_output = nn_actor(batch)
|
64 |
+
nn_time = nn_output['total_time'].item()
|
65 |
+
|
66 |
+
print("\n===== INFERENCE RESULT =====")
|
67 |
+
print(f"Actor Model Total Cost: {total_time:.4f}")
|
68 |
+
print(f"Nearest Neighbor Cost : {nn_time:.4f}")
|
69 |
+
print(f"Improvement over NN : {(nn_time - total_time) / nn_time * 100:.2f}%")
|