Upload 2 files
Browse files- actor.py +751 -0
- actor_modified.py +155 -0
actor.py
ADDED
@@ -0,0 +1,751 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from Actor.graph import Graph
|
5 |
+
from Actor.fleet import Fleet
|
6 |
+
from utils.actor_utils import widen_data, select_data
|
7 |
+
from Actor.normalization import Normalization
|
8 |
+
|
9 |
+
|
10 |
+
#This is the updated version of the actor
|
11 |
+
class Actor(nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, model=None, num_movers=5, num_neighbors_encoder=5,
|
14 |
+
num_neighbors_action=5, normalize=False, use_fleet_attention=True,
|
15 |
+
device='cpu'):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
self.device = device
|
19 |
+
self.num_movers = num_movers
|
20 |
+
self.num_neighbors_encoder = num_neighbors_encoder
|
21 |
+
self.num_neighbors_action = num_neighbors_action
|
22 |
+
|
23 |
+
self.apply_normalization = normalize
|
24 |
+
self.normalization = None
|
25 |
+
self.use_fleet_attention = use_fleet_attention
|
26 |
+
|
27 |
+
|
28 |
+
if model is None:
|
29 |
+
self.mode = 'nearest_neighbors'
|
30 |
+
else:
|
31 |
+
self.encoder = model.encoder.to(self.device)
|
32 |
+
self.decoder = model.decoder.to(self.device)
|
33 |
+
self.projections = model.projections.to(self.device)
|
34 |
+
self.fleet_attention = model.fleet_attention.to(self.device)
|
35 |
+
self.mode = 'train'
|
36 |
+
|
37 |
+
|
38 |
+
self.sample_size = 1
|
39 |
+
|
40 |
+
|
41 |
+
def train_mode(self, sample_size=1):
|
42 |
+
self.train()
|
43 |
+
self.sample_size = sample_size
|
44 |
+
self.mode = 'train'
|
45 |
+
|
46 |
+
|
47 |
+
def greedy_search(self):
|
48 |
+
self.eval()
|
49 |
+
self.mode = 'greedy'
|
50 |
+
|
51 |
+
|
52 |
+
def nearest_neighbors(self):
|
53 |
+
self.eval()
|
54 |
+
self.mode = 'nearest_neighbors'
|
55 |
+
|
56 |
+
|
57 |
+
def sample_mode(self, sample_size=10):
|
58 |
+
self.sample_size = sample_size
|
59 |
+
self.eval()
|
60 |
+
self.mode = 'sample'
|
61 |
+
|
62 |
+
|
63 |
+
def beam_search(self, sample_size=10):
|
64 |
+
self.sample_size=sample_size
|
65 |
+
self.eval()
|
66 |
+
self.mode = 'beam_search'
|
67 |
+
|
68 |
+
|
69 |
+
def update_batch_size(self):
|
70 |
+
self.batch_size = self.fleet.time.shape[0]
|
71 |
+
self.fleet.batch_size = self.fleet.time.shape[0]
|
72 |
+
self.graph.batch_size = self.fleet.time.shape[0]
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
def forward(self, batch, *args, **kwargs):
|
77 |
+
|
78 |
+
graph_data, fleet_data = batch
|
79 |
+
|
80 |
+
self.original_batch_size = graph_data['distance_matrix'].shape[0]
|
81 |
+
self.batch_size = self.original_batch_size
|
82 |
+
|
83 |
+
self.num_nodes = graph_data['distance_matrix'].shape[1]
|
84 |
+
self.num_cars = fleet_data['start_time'].shape[1]
|
85 |
+
|
86 |
+
|
87 |
+
self.graph = Graph(graph_data, device=self.device)
|
88 |
+
self.fleet = Fleet(fleet_data, num_nodes=self.num_nodes, device=self.device)
|
89 |
+
self.num_nodes = self.graph.distance_matrix.shape[1]
|
90 |
+
self.update_batch_size()
|
91 |
+
|
92 |
+
self.normalization = Normalization(self, normalize_position=True)
|
93 |
+
if self.apply_normalization:
|
94 |
+
self.normalization.normalize(self)
|
95 |
+
|
96 |
+
self.num_depots = self.fleet.num_depots.max().item()
|
97 |
+
self.num_movers_corrected = int(min(max(self.num_movers, self.num_depots), self.num_cars))
|
98 |
+
|
99 |
+
|
100 |
+
if self.mode != 'nearest_neighbors':
|
101 |
+
encoder_input = self.graph.construct_vector()
|
102 |
+
encoder_mask = self.compute_encoder_mask()
|
103 |
+
self.node_embeddings = self.encoder(encoder_input, encoder_mask)
|
104 |
+
self.node_projections = self.projections(self.node_embeddings)
|
105 |
+
|
106 |
+
|
107 |
+
if self.mode == 'sample':
|
108 |
+
widen_data(self, include_embeddings=True, include_projections=True)
|
109 |
+
self.update_batch_size()
|
110 |
+
|
111 |
+
|
112 |
+
self.log_probs = torch.zeros(self.batch_size).to(self.device)
|
113 |
+
self.counter = 0
|
114 |
+
while self.loop_condition() and (self.counter < self.num_nodes*4):
|
115 |
+
|
116 |
+
unavailable_moves = self.check_non_depot_options(use_time=True)
|
117 |
+
mover_indices = self.get_mover_indices(unavailable_moves=unavailable_moves)
|
118 |
+
action_mask = self.compute_action_mask(mover_indices=mover_indices,
|
119 |
+
unavailable_moves=unavailable_moves)
|
120 |
+
|
121 |
+
if self.mode != 'nearest_neighbors':
|
122 |
+
decoder_input = self.construct_decoder_input(mover_indices=mover_indices)
|
123 |
+
decoder_mask = self.compute_decoder_mask(mover_indices=mover_indices,
|
124 |
+
unavailable_moves=unavailable_moves)
|
125 |
+
|
126 |
+
decoder_output = self.decoder(decoder_input=decoder_input,
|
127 |
+
projections=self.node_projections,
|
128 |
+
mask=decoder_mask)
|
129 |
+
else:
|
130 |
+
decoder_output = None
|
131 |
+
|
132 |
+
next_node, car_to_move, log_prob = self.compute_action(decoder_output, action_mask, mover_indices)
|
133 |
+
|
134 |
+
if self.mode == 'beam_search':
|
135 |
+
widen_data(self, include_embeddings=True, include_projections=True)
|
136 |
+
self.update_batch_size()
|
137 |
+
|
138 |
+
self.log_probs += log_prob
|
139 |
+
|
140 |
+
self.update_time(next_node, car_to_move)
|
141 |
+
self.update_distance(next_node, car_to_move)
|
142 |
+
self.update_node_path(next_node, car_to_move)
|
143 |
+
self.update_traversed_nodes()
|
144 |
+
|
145 |
+
#self.return_to_depot()
|
146 |
+
#self.update_traversed_nodes()
|
147 |
+
|
148 |
+
if (self.mode == 'beam_search') and (self.counter > 0):
|
149 |
+
self.consolidate_beams()
|
150 |
+
|
151 |
+
self.update_batch_size()
|
152 |
+
self.counter += 1
|
153 |
+
|
154 |
+
self.return_to_depot_1()
|
155 |
+
|
156 |
+
|
157 |
+
if self.mode in {'beam_search', 'sample'}:
|
158 |
+
# we now must select out the best k elments
|
159 |
+
|
160 |
+
incomplete = self.check_complete().float()
|
161 |
+
cost = self.compute_cost()
|
162 |
+
|
163 |
+
max_cost = cost.max()
|
164 |
+
masked_cost = (1 - incomplete)*cost + incomplete*max_cost*10
|
165 |
+
|
166 |
+
p = masked_cost.reshape(self.original_batch_size, self.sample_size)
|
167 |
+
a = torch.argmin(p, dim=1)
|
168 |
+
|
169 |
+
b = torch.arange(self.original_batch_size).to(self.device)
|
170 |
+
b = b * self.sample_size
|
171 |
+
|
172 |
+
index = a + b
|
173 |
+
select_data(self, index=index, include_projections=True, include_embeddings=True)
|
174 |
+
|
175 |
+
|
176 |
+
self.update_batch_size()
|
177 |
+
if self.apply_normalization:
|
178 |
+
self.normalization.inverse_normalize(self)
|
179 |
+
|
180 |
+
total_distance = self.fleet.distance.sum(dim=1).squeeze(1).detach()
|
181 |
+
total_time = self.fleet.time.sum(dim=1).squeeze(1).detach()
|
182 |
+
total_late_time = self.fleet.late_time.sum(dim=1).squeeze(1).detach()
|
183 |
+
|
184 |
+
output = {
|
185 |
+
'distance': total_distance.detach(),
|
186 |
+
'total_time': total_time.detach(),
|
187 |
+
'log_probs': self.log_probs,
|
188 |
+
'late_time': total_late_time.detach(),
|
189 |
+
'incomplete': self.check_complete(),
|
190 |
+
'path': self.fleet.path,
|
191 |
+
'arrival_times': self.fleet.arrival_times
|
192 |
+
}
|
193 |
+
|
194 |
+
return output
|
195 |
+
|
196 |
+
|
197 |
+
def consolidate_beams(self):
|
198 |
+
p = self.log_probs.reshape(self.original_batch_size, self.sample_size * self.sample_size)
|
199 |
+
a = torch.topk(p, dim=1, k=self.sample_size, largest=True)[1]
|
200 |
+
|
201 |
+
b = torch.arange(self.original_batch_size).unsqueeze(1).repeat(1, self.sample_size).to(self.device)
|
202 |
+
b = b * self.sample_size * self.sample_size
|
203 |
+
|
204 |
+
ind = (a + b).reshape(-1)
|
205 |
+
select_data(self, index=ind, include_projections=True, include_embeddings=True)
|
206 |
+
|
207 |
+
|
208 |
+
def adjust_arrival_times(self):
|
209 |
+
|
210 |
+
if self.apply_normalization and (self.normalization_params is not None):
|
211 |
+
num_steps = self.fleet.arrival_times.shape[2]
|
212 |
+
a = self.normalization_params['earliest_start_time'].reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, num_steps)
|
213 |
+
b = self.normalization_params['greatest_drive_time'].reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, num_steps)
|
214 |
+
self.fleet.arrival_times = self.fleet.arrival_times*b + a
|
215 |
+
|
216 |
+
a = self.normalization_params['earliest_start_time']
|
217 |
+
b = self.normalization_params['greatest_drive_time']
|
218 |
+
self.fleet.late_time = self.fleet.late_time*b + a
|
219 |
+
|
220 |
+
|
221 |
+
def compute_encoder_mask(self):
|
222 |
+
#check for drive times being too long
|
223 |
+
time_window_non_compatibility = 1 - self.graph.time_window_compatibility
|
224 |
+
|
225 |
+
#compute diag mask
|
226 |
+
diag = torch.diag(torch.ones(self.num_nodes)).unsqueeze(0).repeat(self.batch_size, 1, 1).to(self.device)
|
227 |
+
|
228 |
+
# compute neighbors mask
|
229 |
+
m = (time_window_non_compatibility + diag > 0).float()
|
230 |
+
|
231 |
+
dist = self.graph.distance_matrix*(1 - m) + m*self.graph.max_dist*10
|
232 |
+
|
233 |
+
K = min(self.num_nodes, self.num_neighbors_encoder)
|
234 |
+
neighbors_index = torch.topk(dist, k=K, dim=2, largest=False)[1] # ~ [batch, num_nodes, num_neighbors]
|
235 |
+
|
236 |
+
a = torch.arange(self.num_nodes).reshape(1, 1, -1, 1).repeat(self.batch_size, self.num_nodes, 1, K).to(self.device)
|
237 |
+
b = neighbors_index.unsqueeze(2).repeat(1, 1, self.num_nodes, 1)
|
238 |
+
neighbors_mask = (a == b).float().sum(dim=3)
|
239 |
+
|
240 |
+
|
241 |
+
m = (time_window_non_compatibility == 0).float()
|
242 |
+
neighbs_time_mask = neighbors_mask*m
|
243 |
+
|
244 |
+
#compute depot mask
|
245 |
+
v = self.graph.depot.reshape(self.batch_size, 1, self.num_nodes).repeat(1, self.num_nodes, 1)
|
246 |
+
w = self.graph.depot.reshape(self.batch_size, self.num_nodes, 1).repeat(1, 1, self.num_nodes)
|
247 |
+
depot_mask = (v + w > 0).float()
|
248 |
+
|
249 |
+
diag = torch.diag(torch.ones(self.num_nodes)).unsqueeze(0).repeat(self.batch_size, 1, 1).to(self.device)
|
250 |
+
|
251 |
+
mask = (neighbs_time_mask + depot_mask + diag > 0).float()
|
252 |
+
return mask
|
253 |
+
|
254 |
+
|
255 |
+
def compute_depoyment_priority_score(self):
|
256 |
+
#number of available nodes
|
257 |
+
available_nodes = (self.check_non_depot_options().float() == 0).float()
|
258 |
+
num_available_nodes = available_nodes.sum(dim=2)
|
259 |
+
|
260 |
+
#excess
|
261 |
+
ind = self.fleet.node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
262 |
+
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind)
|
263 |
+
|
264 |
+
max_distance = self.graph.distance_matrix.reshape(self.batch_size, -1).max(dim=1)[0].reshape(
|
265 |
+
self.batch_size, 1, 1).repeat(1, self.num_cars, self.num_nodes)
|
266 |
+
excess = ((max_distance - distances)*available_nodes).sum(dim=2)
|
267 |
+
|
268 |
+
|
269 |
+
max_excess = excess.max()
|
270 |
+
|
271 |
+
score = (num_available_nodes + max_excess)*10 + excess
|
272 |
+
return score
|
273 |
+
|
274 |
+
|
275 |
+
|
276 |
+
def check_complete(self):
|
277 |
+
has_untraversed_nodes = ((self.fleet.traversed_nodes == 0).float().sum(dim=1) > 0)
|
278 |
+
#has_cars_in_field = ((self.fleet.node != self.fleet.depot).sum(dim=1) > 0)
|
279 |
+
#incomplete = (has_untraversed_nodes | has_cars_in_field)
|
280 |
+
incomplete = has_untraversed_nodes
|
281 |
+
return incomplete
|
282 |
+
|
283 |
+
|
284 |
+
def loop_condition(self):
|
285 |
+
a = self.check_complete().sum().item()
|
286 |
+
if a == 0:
|
287 |
+
return False
|
288 |
+
else:
|
289 |
+
return True
|
290 |
+
|
291 |
+
|
292 |
+
def compute_cost(self):
|
293 |
+
|
294 |
+
dist = self.fleet.distance.sum(dim=1).squeeze(1)
|
295 |
+
time = self.fleet.time.sum(dim=1).squeeze(1)
|
296 |
+
lateness = self.fleet.late_time.sum(dim=1).squeeze(1)
|
297 |
+
|
298 |
+
#normally we compute the cost as a linear combination of these three quantities
|
299 |
+
return time
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
def compute_total_distance(self):
|
304 |
+
p_2 = self.fleet.path
|
305 |
+
p_1 = torch.cat([p_2[:,:,-1:], p_2[:,:,:-1]], dim=2)
|
306 |
+
|
307 |
+
mat = self.graph.distance_matrix.reshape(self.batch_size, 1, self.num_nodes, self.num_nodes).repeat(1, self.num_cars, 1, 1)
|
308 |
+
ind_1 = p_1.unsqueeze(3).repeat(1, 1, 1, self.num_nodes)
|
309 |
+
|
310 |
+
d = torch.gather(mat, dim=2, index=ind_1)
|
311 |
+
ind_2 = p_2.unsqueeze(3)
|
312 |
+
pairwise_distances = torch.gather(d, dim=3, index=ind_2).squeeze(3)
|
313 |
+
|
314 |
+
self.car_distances = pairwise_distances.sum(dim=2)
|
315 |
+
self.total_distance = self.car_distances.sum(dim=1)
|
316 |
+
|
317 |
+
if self.apply_normalization and (self.normalization_params is not None):
|
318 |
+
distance_multiplier = self.normalization_params['greatest_distance']
|
319 |
+
self.total_distance = self.total_distance*distance_multiplier.reshape(self.batch_size)
|
320 |
+
|
321 |
+
return self.total_distance
|
322 |
+
|
323 |
+
|
324 |
+
def update_traversed_nodes(self):
|
325 |
+
|
326 |
+
path_length = self.fleet.path.shape[2]
|
327 |
+
a = self.fleet.path.reshape(self.batch_size, self.num_cars, path_length, 1).repeat(1, 1, 1, self.num_nodes)
|
328 |
+
b = torch.arange(self.num_nodes).reshape(
|
329 |
+
1, 1, 1, self.num_nodes).repeat(
|
330 |
+
self.batch_size, self.num_cars, path_length, 1).to(self.device)
|
331 |
+
|
332 |
+
s = (a == b).float().reshape(self.batch_size, self.num_cars*path_length, self.num_nodes).sum(dim=1)
|
333 |
+
self.fleet.traversed_nodes = (s > 0).float()
|
334 |
+
|
335 |
+
|
336 |
+
def compute_action(self, decoder_output, action_mask, mover_indices):
|
337 |
+
|
338 |
+
if self.mode == 'nearest_neighbors':
|
339 |
+
|
340 |
+
assert decoder_output is None
|
341 |
+
|
342 |
+
num_movers = mover_indices.shape[1]
|
343 |
+
mover_nodes = torch.gather(self.fleet.node, dim=1, index=mover_indices)
|
344 |
+
|
345 |
+
ind = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
346 |
+
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind)
|
347 |
+
|
348 |
+
a = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
349 |
+
b = torch.arange(self.num_nodes).reshape(1, 1, self.num_nodes).repeat(self.batch_size, num_movers, 1).to(self.device)
|
350 |
+
current_node_indicator = (a == b).float()
|
351 |
+
|
352 |
+
a = action_mask.reshape(self.batch_size, -1)
|
353 |
+
no_options = (a.sum(dim=1) == 0).reshape(-1, 1, 1).repeat(1, num_movers, self.num_nodes).float()
|
354 |
+
|
355 |
+
mask = action_mask * (1 - no_options) + current_node_indicator * no_options
|
356 |
+
masked_distances = distances*mask + self.graph.max_dist*(1 - mask)*10
|
357 |
+
|
358 |
+
x = masked_distances.reshape(self.batch_size, -1)
|
359 |
+
ind = torch.argmin(x, dim=1).unsqueeze(1)
|
360 |
+
|
361 |
+
mover_index = ind // self.num_nodes
|
362 |
+
next_node = ind % self.num_nodes
|
363 |
+
car_to_move = torch.gather(mover_indices, dim=1, index=mover_index)
|
364 |
+
|
365 |
+
log_prob = torch.zeros(self.batch_size).to(self.device)
|
366 |
+
return next_node, car_to_move, log_prob
|
367 |
+
|
368 |
+
else:
|
369 |
+
|
370 |
+
assert decoder_output is not None
|
371 |
+
|
372 |
+
num_movers = mover_indices.shape[1]
|
373 |
+
assert (num_movers == action_mask.shape[1]) and (num_movers == decoder_output.shape[1])
|
374 |
+
|
375 |
+
a = action_mask.reshape(self.batch_size, -1)
|
376 |
+
no_options = (a.sum(dim=1) == 0).reshape(-1, 1, 1).repeat(1, num_movers, self.num_nodes).float()
|
377 |
+
|
378 |
+
mover_nodes = torch.gather(self.fleet.node, dim=1, index=mover_indices)
|
379 |
+
a = torch.arange(self.num_nodes).reshape(1, 1, -1).repeat(self.batch_size, num_movers, 1).to(self.device)
|
380 |
+
b = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
381 |
+
default_option = (a == b).float()
|
382 |
+
|
383 |
+
mask = action_mask*(1 - no_options) + default_option*no_options
|
384 |
+
masked_decoder_output = decoder_output + mask.log()
|
385 |
+
|
386 |
+
x = masked_decoder_output.reshape(self.batch_size, -1)
|
387 |
+
probs = torch.softmax(x, dim=1)
|
388 |
+
|
389 |
+
if self.mode == 'greedy':
|
390 |
+
prob, ind = torch.max(probs, dim=1)[0].unsqueeze(1), torch.argmax(probs, dim=1).unsqueeze(1)
|
391 |
+
|
392 |
+
elif self.mode in {'train', 'sample'}:
|
393 |
+
ind = torch.multinomial(probs, num_samples=1)
|
394 |
+
prob = torch.gather(probs, dim=1, index=ind)
|
395 |
+
|
396 |
+
elif self.mode == 'beam_search':
|
397 |
+
prob, ind = torch.topk(probs, dim=1, k=self.sample_size, largest=True)
|
398 |
+
|
399 |
+
mover_index = ind // self.num_nodes
|
400 |
+
next_node = ind % self.num_nodes
|
401 |
+
car_to_move = torch.gather(mover_indices, dim=1, index=mover_index)
|
402 |
+
|
403 |
+
next_node = next_node.reshape(-1)
|
404 |
+
car_to_move = car_to_move.reshape(-1)
|
405 |
+
prob = prob.reshape(-1)
|
406 |
+
|
407 |
+
return next_node, car_to_move, prob.log()
|
408 |
+
|
409 |
+
|
410 |
+
def update_distance(self, next_node, car_to_move):
|
411 |
+
ind = car_to_move.reshape(self.batch_size, 1)
|
412 |
+
n = self.fleet.node.reshape(self.batch_size, self.num_cars)
|
413 |
+
current_node = torch.gather(n, dim=1, index=ind).squeeze(1)
|
414 |
+
|
415 |
+
#compute distance to next node
|
416 |
+
ind_1 = current_node.reshape(-1, 1, 1).repeat(1, 1, self.num_nodes)
|
417 |
+
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind_1).squeeze(1)
|
418 |
+
ind_2 = next_node.reshape(-1, 1)
|
419 |
+
dist_to_next_node = torch.gather(distances, dim=1, index=ind_2).squeeze(1)
|
420 |
+
|
421 |
+
#compute current distance
|
422 |
+
t = self.fleet.distance.reshape(self.batch_size, self.num_cars)
|
423 |
+
current_distance = torch.gather(t, dim=1, index=car_to_move.reshape(self.batch_size, 1)).squeeze(1)
|
424 |
+
|
425 |
+
#compute updated_distance
|
426 |
+
updated_distance = current_distance + dist_to_next_node
|
427 |
+
|
428 |
+
#compute mover mask
|
429 |
+
a = torch.arange(self.num_cars).reshape(1, -1).repeat(self.batch_size, 1).to(self.device)
|
430 |
+
b = car_to_move.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
431 |
+
update_mask = (a == b).float().unsqueeze(2)
|
432 |
+
|
433 |
+
#update distance
|
434 |
+
t = updated_distance.reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, 1)
|
435 |
+
self.fleet.distance = self.fleet.distance * (1 - update_mask) + t * update_mask
|
436 |
+
|
437 |
+
|
438 |
+
def update_time(self, next_node, car_to_move):
|
439 |
+
#get current node of mover
|
440 |
+
ind = car_to_move.reshape(self.batch_size, 1)
|
441 |
+
n = self.fleet.node.reshape(self.batch_size, self.num_cars)
|
442 |
+
current_node = torch.gather(n, dim=1, index=ind).squeeze(1)
|
443 |
+
|
444 |
+
#compute time to next node
|
445 |
+
ind_1 = current_node.reshape(-1, 1, 1).repeat(1, 1, self.num_nodes)
|
446 |
+
drive_times = torch.gather(self.graph.time_matrix, dim=1, index=ind_1).squeeze(1)
|
447 |
+
ind_2 = next_node.reshape(-1, 1)
|
448 |
+
time_to_next_node = torch.gather(drive_times, dim=1, index=ind_2).squeeze(1)
|
449 |
+
|
450 |
+
#compute start time at next node
|
451 |
+
start_time = self.graph.start_time.reshape(self.batch_size, self.num_nodes)
|
452 |
+
ind = next_node.reshape(self.batch_size, 1)
|
453 |
+
next_start_time = torch.gather(start_time, dim=1, index=ind).squeeze(1)
|
454 |
+
|
455 |
+
#compute current time
|
456 |
+
t = self.fleet.time.reshape(self.batch_size, self.num_cars)
|
457 |
+
current_node_time = torch.gather(t, dim=1, index=car_to_move.reshape(self.batch_size, 1)).squeeze(1)
|
458 |
+
|
459 |
+
#compute updated_time
|
460 |
+
a = time_to_next_node + current_node_time
|
461 |
+
b = next_start_time
|
462 |
+
updated_time = (a > b).float()*a + (a <= b).float()*b
|
463 |
+
|
464 |
+
#compute end_time at next node
|
465 |
+
ind = next_node.reshape(-1, 1)
|
466 |
+
end_times = self.graph.end_time.reshape(self.batch_size, self.num_nodes)
|
467 |
+
end_time_next_node = torch.gather(end_times, dim=1, index=ind).squeeze(1)
|
468 |
+
late_time = F.relu(updated_time - end_time_next_node)
|
469 |
+
|
470 |
+
|
471 |
+
#compute mover mask
|
472 |
+
a = torch.arange(self.num_cars).reshape(1, -1).repeat(self.batch_size, 1).to(self.device)
|
473 |
+
b = car_to_move.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
474 |
+
update_mask = (a == b).float().unsqueeze(2)
|
475 |
+
|
476 |
+
#update time
|
477 |
+
t = updated_time.reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, 1)
|
478 |
+
self.fleet.time = self.fleet.time*(1 - update_mask) + t*update_mask
|
479 |
+
|
480 |
+
# update_late_time
|
481 |
+
l = late_time.reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, 1)
|
482 |
+
self.fleet.late_time = self.fleet.late_time*(1 - update_mask) + l*update_mask
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
def update_node_path(self, next_node, car_to_move):
|
487 |
+
#compute mover mask
|
488 |
+
a = torch.arange(self.num_cars).reshape(1, -1).repeat(self.batch_size, 1).to(self.device)
|
489 |
+
b = car_to_move.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
490 |
+
update_mask = (a == b).long()
|
491 |
+
|
492 |
+
new_node = next_node.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
493 |
+
self.fleet.node = update_mask*new_node + self.fleet.node*(1 - update_mask)
|
494 |
+
|
495 |
+
L = [self.fleet.path, self.fleet.node.unsqueeze(2)]
|
496 |
+
self.fleet.path = torch.cat(L, dim=2)
|
497 |
+
|
498 |
+
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1)
|
499 |
+
H = [self.fleet.arrival_times, t]
|
500 |
+
self.fleet.arrival_times = torch.cat(H, dim=2)
|
501 |
+
|
502 |
+
|
503 |
+
|
504 |
+
def check_non_depot_options(self, use_time=True):
|
505 |
+
'''
|
506 |
+
Output is a byte tensor of shape [batch, num_cars, num_nodes] with entry (i,j) = 1 if
|
507 |
+
the move of car i to node j is invalid
|
508 |
+
'''
|
509 |
+
|
510 |
+
if use_time:
|
511 |
+
#check for arrival times
|
512 |
+
too_far = 1 - self.check_arival_times()
|
513 |
+
|
514 |
+
#is depot
|
515 |
+
a = self.fleet.depot.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
516 |
+
b = torch.arange(self.num_nodes).reshape(1, 1, -1).repeat(self.batch_size, self.num_cars, 1).to(self.device)
|
517 |
+
is_depot = (a == b)
|
518 |
+
|
519 |
+
#check traversed nodes
|
520 |
+
a = self.fleet.traversed_nodes.reshape(self.batch_size, 1, self.num_nodes).repeat(1, self.num_cars, 1)
|
521 |
+
traversed_nodes = (a == 1)
|
522 |
+
|
523 |
+
# has value of 1 if the move to that node is NOT possible
|
524 |
+
if use_time:
|
525 |
+
unavailable_moves = (too_far | is_depot | traversed_nodes)
|
526 |
+
else:
|
527 |
+
unavailable_moves = (is_depot | traversed_nodes)
|
528 |
+
|
529 |
+
return unavailable_moves
|
530 |
+
|
531 |
+
|
532 |
+
def compute_decoder_mask(self, mover_indices, unavailable_moves):
|
533 |
+
|
534 |
+
num_movers = mover_indices.shape[1]
|
535 |
+
|
536 |
+
mover_nodes = torch.gather(self.fleet.node, dim=1, index=mover_indices)
|
537 |
+
|
538 |
+
ind = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
539 |
+
unavailable_moves = torch.gather(unavailable_moves, dim=1, index=ind)
|
540 |
+
|
541 |
+
no_options = ((1 - unavailable_moves.float()).sum(dim=2) == 0).unsqueeze(2).repeat(1, 1, self.num_nodes).float()
|
542 |
+
|
543 |
+
a = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
544 |
+
b = torch.arange(self.num_nodes).reshape(1, 1, -1).repeat(self.batch_size, num_movers, 1).to(self.device)
|
545 |
+
default_move = (a == b).float()
|
546 |
+
|
547 |
+
decoder_mask = (1 - unavailable_moves.float())*(1 - no_options) + default_move*no_options
|
548 |
+
return decoder_mask
|
549 |
+
|
550 |
+
|
551 |
+
def compute_action_mask(self, mover_indices, unavailable_moves):
|
552 |
+
|
553 |
+
if self.mode != 'nearest_neighbors':
|
554 |
+
######################################################
|
555 |
+
d = torch.diag(torch.ones(self.num_nodes)).unsqueeze(0).repeat(self.batch_size, 1, 1).to(self.device)
|
556 |
+
ind = self.fleet.node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
557 |
+
|
558 |
+
diag = torch.gather(d, dim=1, index=ind)
|
559 |
+
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind)
|
560 |
+
m = (unavailable_moves.float() + diag > 0).float()
|
561 |
+
|
562 |
+
masked_distances = distances*(1 - m) + m*self.graph.max_dist*100
|
563 |
+
K = min(self.num_neighbors_action, self.num_nodes)
|
564 |
+
neighbor_indices = torch.topk(masked_distances, dim=2, k=K, largest=False)[1]
|
565 |
+
|
566 |
+
a = torch.arange(self.num_nodes).reshape(1, 1, -1, 1).repeat(self.batch_size, self.num_cars, 1, K).to(self.device)
|
567 |
+
b = neighbor_indices.reshape(self.batch_size, self.num_cars, 1, K).repeat(1, 1, self.num_nodes, 1)
|
568 |
+
|
569 |
+
non_neighbor_mask = ((a == b).float().sum(dim=3) == 0)
|
570 |
+
mask = 1 - (non_neighbor_mask | unavailable_moves).float()
|
571 |
+
######################################################
|
572 |
+
else:
|
573 |
+
mask = 1 - unavailable_moves.float()
|
574 |
+
|
575 |
+
num_movers = mover_indices.shape[1]
|
576 |
+
ind = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
577 |
+
action_mask = torch.gather(mask, dim=1, index=ind)
|
578 |
+
return action_mask
|
579 |
+
|
580 |
+
|
581 |
+
|
582 |
+
def construct_decoder_input(self, mover_indices):
|
583 |
+
|
584 |
+
embedding_size = self.node_embeddings.shape[2]
|
585 |
+
mask = self.check_non_depot_options(use_time=True)
|
586 |
+
mask = mask.permute(0, 2, 1).unsqueeze(3).repeat(1, 1, 1, embedding_size).float()
|
587 |
+
|
588 |
+
node_vectors = self.node_embeddings.reshape(self.batch_size, self.num_nodes, 1, embedding_size).repeat(1, 1, self.num_cars, 1)
|
589 |
+
|
590 |
+
#depot vector
|
591 |
+
start_ind = self.fleet.depot.reshape(self.batch_size, 1, self.num_cars, 1).repeat(1, 1, 1, embedding_size)
|
592 |
+
a = torch.gather(node_vectors, dim=1, index=start_ind)
|
593 |
+
depot_vector = a.squeeze(1)
|
594 |
+
|
595 |
+
#current node vector
|
596 |
+
current_ind = self.fleet.node.reshape(self.batch_size, 1, self.num_cars, 1).repeat(1, 1, 1, embedding_size)
|
597 |
+
b = torch.gather(node_vectors, dim=1, index=current_ind)
|
598 |
+
current_node_vector = b.squeeze(1)
|
599 |
+
|
600 |
+
#mean graph vector
|
601 |
+
mean_graph_vector = node_vectors.mean(dim=1)
|
602 |
+
|
603 |
+
|
604 |
+
#current feature values
|
605 |
+
feature_values = self.fleet.construct_vector()
|
606 |
+
|
607 |
+
|
608 |
+
#other cars in field
|
609 |
+
num_movers = mover_indices.shape[1]
|
610 |
+
if num_movers == 1:
|
611 |
+
movers_vector = current_node_vector*0
|
612 |
+
elif not self.use_fleet_attention:
|
613 |
+
a = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_cars)
|
614 |
+
b = torch.arange(self.num_cars).reshape(1, 1, self.num_cars).repeat(self.batch_size, num_movers, 1).to(self.device)
|
615 |
+
c = ((a == b).float().sum(dim=1) > 0).float()
|
616 |
+
movers_mask = c.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, embedding_size)
|
617 |
+
movers_vector = ((current_node_vector*movers_mask).sum(dim=1).unsqueeze(1) - current_node_vector)/(num_movers - 1)
|
618 |
+
else:
|
619 |
+
x = torch.cat([current_node_vector, feature_values], dim=2)
|
620 |
+
movers_vector = self.fleet_attention(x)
|
621 |
+
|
622 |
+
|
623 |
+
L = [current_node_vector, depot_vector, mean_graph_vector, movers_vector, feature_values]
|
624 |
+
pre_output = torch.cat(L, dim=2)
|
625 |
+
|
626 |
+
|
627 |
+
num_movers = mover_indices.shape[1]
|
628 |
+
ind = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, pre_output.shape[2])
|
629 |
+
output = torch.gather(pre_output, dim=1, index=ind)
|
630 |
+
|
631 |
+
return output
|
632 |
+
|
633 |
+
|
634 |
+
def get_mover_indices(self, unavailable_moves):
|
635 |
+
depot = self.fleet.depot.reshape(self.batch_size, self.num_cars).long()
|
636 |
+
current_node = self.fleet.node.reshape(self.batch_size, self.num_cars).long()
|
637 |
+
|
638 |
+
# find all cars with "no options"
|
639 |
+
has_option = ((1 - unavailable_moves.float()).sum(dim=2) > 0)
|
640 |
+
|
641 |
+
at_depot = (current_node == depot)
|
642 |
+
in_field = (current_node != depot)
|
643 |
+
active_in_field = in_field & has_option
|
644 |
+
active_at_depot = at_depot & has_option
|
645 |
+
|
646 |
+
deployment_score = self.compute_depoyment_priority_score()
|
647 |
+
max_deployment_score = deployment_score.max()
|
648 |
+
|
649 |
+
A = max_deployment_score * 100
|
650 |
+
B = deployment_score * 10
|
651 |
+
|
652 |
+
score = active_in_field.float() * A + active_at_depot.float() * B
|
653 |
+
score = score.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_depots)
|
654 |
+
|
655 |
+
a = self.fleet.depot.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_depots)
|
656 |
+
b = torch.arange(self.num_depots).reshape(1, 1, self.num_depots).repeat(self.batch_size, self.num_cars, 1).to(self.device)
|
657 |
+
m = (a == b).float()
|
658 |
+
|
659 |
+
score = score*m
|
660 |
+
|
661 |
+
K = self.num_movers_corrected
|
662 |
+
indices = torch.topk(score, k=K, dim=1, largest=True)[1]
|
663 |
+
indices = indices.reshape(self.batch_size, self.num_depots*K)
|
664 |
+
return indices
|
665 |
+
|
666 |
+
|
667 |
+
def check_arival_times(self):
|
668 |
+
#check for arrival times
|
669 |
+
d = self.graph.time_matrix.unsqueeze(1).repeat(1, self.num_cars, 1, 1)
|
670 |
+
ind = self.fleet.node.reshape(self.batch_size, self.num_cars, 1, 1).repeat(1, 1, 1, self.num_nodes)
|
671 |
+
drive_times = torch.gather(d, dim=2, index=ind).squeeze(2)
|
672 |
+
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
673 |
+
arival_times = drive_times + t
|
674 |
+
b = self.graph.end_time.reshape(self.batch_size, 1, self.num_nodes).repeat(1, self.num_cars, 1)
|
675 |
+
attainable = (arival_times <= b)
|
676 |
+
return attainable
|
677 |
+
|
678 |
+
|
679 |
+
def return_to_depot(self):
|
680 |
+
unavailable_moves = 1 - self.check_non_depot_options(use_time=False).float()
|
681 |
+
return_to_depot = (unavailable_moves.reshape(self.batch_size, -1).sum(dim=1) == 0).float()
|
682 |
+
return_to_depot = return_to_depot.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
683 |
+
|
684 |
+
|
685 |
+
if return_to_depot.sum().item() > 0:
|
686 |
+
|
687 |
+
depot = self.fleet.depot.reshape(self.batch_size, self.num_cars).long()
|
688 |
+
node = self.fleet.node.reshape(self.batch_size, self.num_cars).long()
|
689 |
+
|
690 |
+
#compute next node
|
691 |
+
return_to_depot = return_to_depot.long()
|
692 |
+
next_node = return_to_depot*depot + (1 - return_to_depot)*node
|
693 |
+
|
694 |
+
#update time
|
695 |
+
return_to_depot = return_to_depot.unsqueeze(2).float()
|
696 |
+
|
697 |
+
current_node = self.fleet.node
|
698 |
+
ind_1 = current_node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
699 |
+
drive_times = torch.gather(self.graph.time_matrix, dim=1, index=ind_1)
|
700 |
+
ind_2 = next_node.reshape(self.batch_size, self.num_cars, 1)
|
701 |
+
time_to_next_node = torch.gather(drive_times, dim=2, index=ind_2)
|
702 |
+
self.fleet.time = self.fleet.time + time_to_next_node*return_to_depot
|
703 |
+
|
704 |
+
#update node
|
705 |
+
self.fleet.node = next_node
|
706 |
+
|
707 |
+
#update path
|
708 |
+
n = self.fleet.node.reshape(self.batch_size, self.num_cars, 1)
|
709 |
+
self.fleet.path = torch.cat([self.fleet.path, n], dim=2)
|
710 |
+
|
711 |
+
#update arrival time
|
712 |
+
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1)
|
713 |
+
self.fleet.arrival_times = torch.cat([self.fleet.arrival_times, t], dim=2)
|
714 |
+
|
715 |
+
|
716 |
+
def return_to_depot_1(self):
|
717 |
+
|
718 |
+
depot = self.fleet.depot.reshape(self.batch_size, self.num_cars).long()
|
719 |
+
node = self.fleet.node.reshape(self.batch_size, self.num_cars).long()
|
720 |
+
|
721 |
+
#compute next node
|
722 |
+
next_node = depot
|
723 |
+
|
724 |
+
#update time
|
725 |
+
current_node = self.fleet.node
|
726 |
+
ind_1 = current_node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
727 |
+
drive_times = torch.gather(self.graph.time_matrix, dim=1, index=ind_1)
|
728 |
+
ind_2 = next_node.reshape(self.batch_size, self.num_cars, 1)
|
729 |
+
time_to_next_node = torch.gather(drive_times, dim=2, index=ind_2)
|
730 |
+
self.fleet.time = self.fleet.time + time_to_next_node
|
731 |
+
|
732 |
+
|
733 |
+
#update distance
|
734 |
+
current_node = self.fleet.node
|
735 |
+
ind_1 = current_node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
736 |
+
drive_distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind_1)
|
737 |
+
ind_2 = next_node.reshape(self.batch_size, self.num_cars, 1)
|
738 |
+
distance_to_next_node = torch.gather(drive_distances, dim=2, index=ind_2)
|
739 |
+
self.fleet.distance = self.fleet.distance + distance_to_next_node
|
740 |
+
|
741 |
+
|
742 |
+
#update node
|
743 |
+
self.fleet.node = next_node
|
744 |
+
|
745 |
+
#update path
|
746 |
+
n = self.fleet.node.reshape(self.batch_size, self.num_cars, 1)
|
747 |
+
self.fleet.path = torch.cat([self.fleet.path, n], dim=2)
|
748 |
+
|
749 |
+
#update arrival time
|
750 |
+
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1)
|
751 |
+
self.fleet.arrival_times = torch.cat([self.fleet.arrival_times, t], dim=2)
|
actor_modified.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from Actor.graph import Graph
|
5 |
+
from Actor.fleet import Fleet
|
6 |
+
from utils.actor_utils import widen_data, select_data
|
7 |
+
from Actor.normalization import Normalization
|
8 |
+
|
9 |
+
|
10 |
+
class Actor(nn.Module):
|
11 |
+
def __init__(self, model=None, num_movers=5, num_neighbors_encoder=5,
|
12 |
+
num_neighbors_action=5, normalize=False, use_fleet_attention=True,
|
13 |
+
device='cpu'):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
self.device = device
|
17 |
+
self.num_movers = num_movers
|
18 |
+
self.num_neighbors_encoder = num_neighbors_encoder
|
19 |
+
self.num_neighbors_action = num_neighbors_action
|
20 |
+
|
21 |
+
self.apply_normalization = normalize
|
22 |
+
self.normalization = None
|
23 |
+
self.use_fleet_attention = use_fleet_attention
|
24 |
+
|
25 |
+
if model is None:
|
26 |
+
self.mode = 'nearest_neighbors'
|
27 |
+
else:
|
28 |
+
self.encoder = model.encoder.to(self.device)
|
29 |
+
self.decoder = model.decoder.to(self.device)
|
30 |
+
self.projections = model.projections.to(self.device)
|
31 |
+
self.fleet_attention = model.fleet_attention.to(self.device)
|
32 |
+
self.mode = 'train'
|
33 |
+
|
34 |
+
self.sample_size = 1
|
35 |
+
|
36 |
+
def train_mode(self, sample_size=1):
|
37 |
+
self.train()
|
38 |
+
self.sample_size = sample_size
|
39 |
+
self.mode = 'train'
|
40 |
+
|
41 |
+
def greedy_search(self):
|
42 |
+
self.eval()
|
43 |
+
self.mode = 'greedy'
|
44 |
+
|
45 |
+
def nearest_neighbors(self):
|
46 |
+
self.eval()
|
47 |
+
self.mode = 'nearest_neighbors'
|
48 |
+
|
49 |
+
def sample_mode(self, sample_size=10):
|
50 |
+
self.sample_size = sample_size
|
51 |
+
self.eval()
|
52 |
+
self.mode = 'sample'
|
53 |
+
|
54 |
+
def beam_search(self, sample_size=10):
|
55 |
+
self.sample_size = sample_size
|
56 |
+
self.eval()
|
57 |
+
self.mode = 'beam_search'
|
58 |
+
|
59 |
+
def update_batch_size(self):
|
60 |
+
self.batch_size = self.fleet.time.shape[0]
|
61 |
+
self.fleet.batch_size = self.batch_size
|
62 |
+
self.graph.batch_size = self.batch_size
|
63 |
+
|
64 |
+
def forward(self, batch, *args, **kwargs):
|
65 |
+
graph_data, fleet_data = batch
|
66 |
+
self.original_batch_size = graph_data['distance_matrix'].shape[0]
|
67 |
+
self.batch_size = self.original_batch_size
|
68 |
+
|
69 |
+
self.num_nodes = graph_data['distance_matrix'].shape[1]
|
70 |
+
self.num_cars = fleet_data['start_time'].shape[1]
|
71 |
+
|
72 |
+
self.graph = Graph(graph_data, device=self.device)
|
73 |
+
self.fleet = Fleet(fleet_data, num_nodes=self.num_nodes, device=self.device)
|
74 |
+
self.update_batch_size()
|
75 |
+
|
76 |
+
self.normalization = Normalization(self, normalize_position=True)
|
77 |
+
if self.apply_normalization:
|
78 |
+
self.normalization.normalize(self)
|
79 |
+
|
80 |
+
self.num_depots = self.fleet.num_depots.max().item()
|
81 |
+
self.num_movers_corrected = int(min(max(self.num_movers, self.num_depots), self.num_cars))
|
82 |
+
|
83 |
+
if self.mode != 'nearest_neighbors':
|
84 |
+
encoder_input = self.graph.construct_vector()
|
85 |
+
encoder_mask = self.compute_encoder_mask()
|
86 |
+
self.node_embeddings = self.encoder(encoder_input, encoder_mask)
|
87 |
+
self.node_projections = self.projections(self.node_embeddings)
|
88 |
+
|
89 |
+
if self.mode == 'sample':
|
90 |
+
widen_data(self, include_embeddings=True, include_projections=True)
|
91 |
+
self.update_batch_size()
|
92 |
+
|
93 |
+
self.log_probs = torch.zeros(self.batch_size).to(self.device)
|
94 |
+
self.counter = 0
|
95 |
+
while self.loop_condition() and (self.counter < self.num_nodes * 4):
|
96 |
+
unavailable_moves = self.check_non_depot_options(use_time=True)
|
97 |
+
mover_indices = self.get_mover_indices(unavailable_moves=unavailable_moves)
|
98 |
+
action_mask = self.compute_action_mask(mover_indices=mover_indices, unavailable_moves=unavailable_moves)
|
99 |
+
|
100 |
+
decoder_output = None
|
101 |
+
if self.mode != 'nearest_neighbors':
|
102 |
+
decoder_input = self.construct_decoder_input(mover_indices=mover_indices)
|
103 |
+
decoder_mask = self.compute_decoder_mask(mover_indices=mover_indices, unavailable_moves=unavailable_moves)
|
104 |
+
decoder_output = self.decoder(decoder_input=decoder_input,
|
105 |
+
projections=self.node_projections,
|
106 |
+
mask=decoder_mask)
|
107 |
+
|
108 |
+
next_node, car_to_move, log_prob = self.compute_action(decoder_output, action_mask, mover_indices)
|
109 |
+
|
110 |
+
if self.mode == 'beam_search':
|
111 |
+
widen_data(self, include_embeddings=True, include_projections=True)
|
112 |
+
self.update_batch_size()
|
113 |
+
|
114 |
+
self.log_probs += log_prob
|
115 |
+
self.update_time(next_node, car_to_move)
|
116 |
+
self.update_distance(next_node, car_to_move)
|
117 |
+
self.update_node_path(next_node, car_to_move)
|
118 |
+
self.update_traversed_nodes()
|
119 |
+
|
120 |
+
if (self.mode == 'beam_search') and (self.counter > 0):
|
121 |
+
self.consolidate_beams()
|
122 |
+
|
123 |
+
self.update_batch_size()
|
124 |
+
self.counter += 1
|
125 |
+
|
126 |
+
self.return_to_depot_1()
|
127 |
+
|
128 |
+
if self.mode in {'beam_search', 'sample'}:
|
129 |
+
incomplete = self.check_complete().float()
|
130 |
+
cost = self.compute_cost()
|
131 |
+
max_cost = cost.max()
|
132 |
+
masked_cost = (1 - incomplete) * cost + incomplete * max_cost * 10
|
133 |
+
|
134 |
+
p = masked_cost.reshape(self.original_batch_size, self.sample_size)
|
135 |
+
a = torch.argmin(p, dim=1)
|
136 |
+
b = torch.arange(self.original_batch_size).to(self.device)
|
137 |
+
b = b * self.sample_size
|
138 |
+
index = a + b
|
139 |
+
select_data(self, index=index, include_projections=True, include_embeddings=True)
|
140 |
+
|
141 |
+
self.update_batch_size()
|
142 |
+
if self.apply_normalization:
|
143 |
+
self.normalization.inverse_normalize(self)
|
144 |
+
|
145 |
+
output = {
|
146 |
+
'distance': self.fleet.distance.sum(dim=1).squeeze(1).detach(),
|
147 |
+
'total_time': self.fleet.time.sum(dim=1).squeeze(1).detach(),
|
148 |
+
'log_probs': self.log_probs,
|
149 |
+
'late_time': self.fleet.late_time.sum(dim=1).squeeze(1).detach(),
|
150 |
+
'incomplete': self.check_complete(),
|
151 |
+
'path': self.fleet.path,
|
152 |
+
'arrival_times': self.fleet.arrival_times
|
153 |
+
}
|
154 |
+
|
155 |
+
return output
|