Create nets/encoder.py
Browse files- nets/encoder.py +106 -0
nets/encoder.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from nets.multi_headed_attention import MultiHeadAttention
|
5 |
+
import math
|
6 |
+
|
7 |
+
|
8 |
+
class SkipConnection(nn.Module):
|
9 |
+
def __init__(self, module, use_mask=True):
|
10 |
+
super(SkipConnection, self).__init__()
|
11 |
+
self.use_mask = use_mask
|
12 |
+
self.module = module
|
13 |
+
|
14 |
+
def forward(self, input):
|
15 |
+
if isinstance(input, tuple):
|
16 |
+
if len(input) > 1:
|
17 |
+
input, mask = input[0], input[1]
|
18 |
+
else:
|
19 |
+
input = input[0]
|
20 |
+
else:
|
21 |
+
mask = None
|
22 |
+
|
23 |
+
if self.use_mask:
|
24 |
+
return input + self.module(input, mask=mask), mask
|
25 |
+
else:
|
26 |
+
return input + self.module(input), mask
|
27 |
+
|
28 |
+
|
29 |
+
class Normalization(nn.Module):
|
30 |
+
def __init__(self, embed_dim, normalization='batch'):
|
31 |
+
super(Normalization, self).__init__()
|
32 |
+
|
33 |
+
normalizer_class = {
|
34 |
+
'batch': nn.BatchNorm1d,
|
35 |
+
'instance': nn.InstanceNorm1d
|
36 |
+
}.get(normalization, None)
|
37 |
+
|
38 |
+
self.normalizer = normalizer_class(embed_dim, affine=True)
|
39 |
+
|
40 |
+
def forward(self, input):
|
41 |
+
if isinstance(input, tuple):
|
42 |
+
if len(input) > 1:
|
43 |
+
input, mask = input[0], input[1]
|
44 |
+
else:
|
45 |
+
input = input[0]
|
46 |
+
else:
|
47 |
+
mask = None
|
48 |
+
|
49 |
+
if isinstance(self.normalizer, nn.BatchNorm1d):
|
50 |
+
return self.normalizer(input.view(-1, input.size(-1))).view(*input.size()), mask
|
51 |
+
elif isinstance(self.normalizer, nn.InstanceNorm1d):
|
52 |
+
return self.normalizer(input.permute(0, 2, 1)).permute(0, 2, 1), mask
|
53 |
+
else:
|
54 |
+
assert self.normalizer is None, "Unknown normalizer type"
|
55 |
+
return input, mask
|
56 |
+
|
57 |
+
|
58 |
+
class MultiHeadAttentionLayer(nn.Sequential):
|
59 |
+
def __init__(self, n_heads, embed_dim, feed_forward_hidden=512, normalization='batch'):
|
60 |
+
super(MultiHeadAttentionLayer, self).__init__(
|
61 |
+
SkipConnection(
|
62 |
+
MultiHeadAttention(n_heads, input_dim=embed_dim, embed_dim=embed_dim),
|
63 |
+
use_mask=True
|
64 |
+
),
|
65 |
+
Normalization(embed_dim, normalization),
|
66 |
+
SkipConnection(
|
67 |
+
nn.Sequential(
|
68 |
+
nn.Linear(embed_dim, feed_forward_hidden),
|
69 |
+
nn.ReLU(),
|
70 |
+
nn.Linear(feed_forward_hidden, embed_dim)
|
71 |
+
) if feed_forward_hidden > 0 else nn.Linear(embed_dim, embed_dim),
|
72 |
+
use_mask=False
|
73 |
+
),
|
74 |
+
Normalization(embed_dim, normalization)
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
class Encoder(nn.Module):
|
79 |
+
def __init__(self, n_heads, embed_dim, n_layers, node_dim=None,
|
80 |
+
normalization='batch', feed_forward_hidden=200):
|
81 |
+
super(Encoder, self).__init__()
|
82 |
+
|
83 |
+
self.init_embed = nn.Linear(node_dim, embed_dim) if node_dim is not None else None
|
84 |
+
|
85 |
+
self.layers = nn.Sequential(*(
|
86 |
+
MultiHeadAttentionLayer(
|
87 |
+
n_heads, embed_dim,
|
88 |
+
feed_forward_hidden=feed_forward_hidden,
|
89 |
+
normalization=normalization
|
90 |
+
) for _ in range(n_layers)
|
91 |
+
))
|
92 |
+
|
93 |
+
def forward(self, input, mask=None):
|
94 |
+
device = input.device
|
95 |
+
batch_size = input.shape[0]
|
96 |
+
num_nodes = input.shape[1]
|
97 |
+
|
98 |
+
if mask is None:
|
99 |
+
mask = torch.ones(batch_size, num_nodes, num_nodes).to(device).float()
|
100 |
+
|
101 |
+
mask = (mask == 0) # invert mask: 1s where we want to mask
|
102 |
+
|
103 |
+
x = input
|
104 |
+
h = self.init_embed(x.view(-1, x.size(-1))).view(*x.size()[:2], -1) if self.init_embed is not None else x
|
105 |
+
h, _ = self.layers((h, mask)) # Pass both h and mask through layers
|
106 |
+
return h
|