Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Update google_solver/scratch.py
Browse files- google_solver/scratch.py +20 -14
    	
        google_solver/scratch.py
    CHANGED
    
    | @@ -1,27 +1,33 @@ | |
| 1 | 
            -
             | 
| 2 | 
            -
             | 
| 3 | 
             
            from just_time_windows.google_solver.google_model import evaluate_google_model
         | 
| 4 | 
             
            from just_time_windows.Actor.actor import Actor as NN_Actor
         | 
| 5 | 
             
            from just_time_windows.build_data import Raw_VRP_Data
         | 
| 6 | 
             
            from just_time_windows.dataloader import VRP_Dataset
         | 
| 7 |  | 
|  | |
|  | |
|  | |
| 8 |  | 
| 9 | 
            -
             | 
| 10 | 
            -
             | 
| 11 | 
            -
            batch = dataset.get_batch(0, 10)
         | 
| 12 | 
            -
             | 
| 13 | 
            -
            nn_actor = NN_Actor(model=None, num_movers=10, num_neighbors_action=1)
         | 
| 14 |  | 
|  | |
|  | |
| 15 |  | 
| 16 | 
            -
             | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
|  | |
| 19 |  | 
|  | |
|  | |
| 20 |  | 
| 21 | 
            -
             | 
|  | |
|  | |
| 22 |  | 
|  | |
|  | |
| 23 |  | 
| 24 |  | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
            print(output.mean().item())
         | 
|  | |
|  | |
|  | |
| 1 | 
             
            from just_time_windows.google_solver.google_model import evaluate_google_model
         | 
| 2 | 
             
            from just_time_windows.Actor.actor import Actor as NN_Actor
         | 
| 3 | 
             
            from just_time_windows.build_data import Raw_VRP_Data
         | 
| 4 | 
             
            from just_time_windows.dataloader import VRP_Dataset
         | 
| 5 |  | 
| 6 | 
            +
            def main():
         | 
| 7 | 
            +
                # إعداد مجموعة بيانات صغيرة للاختبار
         | 
| 8 | 
            +
                dataset = VRP_Dataset(dataset_size=10, num_depots=1, num_nodes=12)
         | 
| 9 |  | 
| 10 | 
            +
                # استخراج دفعة واحدة للاختبار
         | 
| 11 | 
            +
                batch = dataset.get_batch(start_index=0, batch_size=10)
         | 
|  | |
|  | |
|  | |
| 12 |  | 
| 13 | 
            +
                # تهيئة نموذج الشبكة العصبية
         | 
| 14 | 
            +
                nn_actor = NN_Actor(model=None, num_movers=10, num_neighbors_action=1)
         | 
| 15 |  | 
| 16 | 
            +
                # حساب مخرجات NN
         | 
| 17 | 
            +
                nn_output = nn_actor(batch)
         | 
| 18 | 
            +
                total_time_nn = nn_output['total_time']
         | 
| 19 | 
            +
                arrival_times_nn = nn_output['arrival_times']
         | 
| 20 |  | 
| 21 | 
            +
                # استخدام Google OR-Tools لتقييم نفس البيانات
         | 
| 22 | 
            +
                google_output = evaluate_google_model(dataset)
         | 
| 23 |  | 
| 24 | 
            +
                # طباعة النتائج للمقارنة
         | 
| 25 | 
            +
                print("Arrival times (NN):")
         | 
| 26 | 
            +
                print(arrival_times_nn)
         | 
| 27 |  | 
| 28 | 
            +
                print("\nAverage Total Time (NN Actor):", total_time_nn.mean().item())
         | 
| 29 | 
            +
                print("Average Total Time (Google OR-Tools):", google_output.mean().item())
         | 
| 30 |  | 
| 31 |  | 
| 32 | 
            +
            if __name__ == '__main__':
         | 
| 33 | 
            +
                main()
         | 
|  |