Upload 3 files
Browse files- utils/beam_search_utils.py +91 -0
- utils/build_dataset.py +4 -0
- utils/gradient_clipping.py +0 -0
utils/beam_search_utils.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def widen_tensor(datum, factor):
|
5 |
+
|
6 |
+
if len(datum.shape) == 0:
|
7 |
+
return datum
|
8 |
+
|
9 |
+
L = list(datum.shape)
|
10 |
+
a = [1, factor] + [1 for _ in range(len(L) - 1)]
|
11 |
+
|
12 |
+
datum = datum.unsqueeze(1)
|
13 |
+
datum = datum.repeat(*a)
|
14 |
+
|
15 |
+
if len(L) > 1:
|
16 |
+
b = [L[0] * factor] + L[1:]
|
17 |
+
else:
|
18 |
+
b = [L[0] * factor]
|
19 |
+
|
20 |
+
datum = datum.reshape(*b)
|
21 |
+
return datum
|
22 |
+
|
23 |
+
|
24 |
+
def widen_data(actor, include_embeddings=True, include_projections=True):
|
25 |
+
|
26 |
+
F = dir(actor.fleet)
|
27 |
+
for s in F:
|
28 |
+
x = getattr(actor.fleet, s)
|
29 |
+
if isinstance(x, torch.Tensor):
|
30 |
+
if len(x.shape) > 0:
|
31 |
+
y = widen_tensor(x, factor=actor.sample_size)
|
32 |
+
setattr(actor.fleet, s, y)
|
33 |
+
|
34 |
+
G = dir(actor.graph)
|
35 |
+
for s in G:
|
36 |
+
x = getattr(actor.graph, s)
|
37 |
+
if isinstance(x, torch.Tensor):
|
38 |
+
if len(x.shape) > 0:
|
39 |
+
y = widen_tensor(x, factor=actor.sample_size)
|
40 |
+
setattr(actor.graph, s, y)
|
41 |
+
|
42 |
+
actor.log_probs = widen_tensor(actor.log_probs, factor=actor.sample_size)
|
43 |
+
|
44 |
+
if include_embeddings:
|
45 |
+
actor.node_embeddings = widen_tensor(actor.node_embeddings, factor=actor.sample_size)
|
46 |
+
|
47 |
+
if include_projections:
|
48 |
+
def widen_projection(x, size):
|
49 |
+
if len(x.shape) > 3:
|
50 |
+
y = x.unsqueeze(2).repeat(1, 1, size, 1, 1)
|
51 |
+
return y.reshape(x.shape[0], x.shape[1] * size, x.shape[2], x.shape[3])
|
52 |
+
else:
|
53 |
+
return widen_tensor(x, size)
|
54 |
+
|
55 |
+
actor.node_projections = {key : widen_projection(actor.node_projections[key], actor.sample_size)
|
56 |
+
for key in actor.node_projections}
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def select_data(self, index, include_embeddings=True, include_projections=True):
|
61 |
+
m = index.max().item()
|
62 |
+
|
63 |
+
F = dir(self.fleet)
|
64 |
+
for s in F:
|
65 |
+
x = getattr(self.fleet, s)
|
66 |
+
if isinstance(x, torch.Tensor):
|
67 |
+
if (len(x.shape) > 0) and (x.shape[0] >= m):
|
68 |
+
setattr(self.fleet, s, x[index])
|
69 |
+
|
70 |
+
G = dir(self.graph)
|
71 |
+
for s in G:
|
72 |
+
x = getattr(self.graph, s)
|
73 |
+
if isinstance(x, torch.Tensor):
|
74 |
+
if (len(x.shape) > 0) and (x.shape[0] >= m):
|
75 |
+
setattr(self.graph, s, x[index])
|
76 |
+
|
77 |
+
self.log_probs = self.log_probs[index]
|
78 |
+
|
79 |
+
if include_embeddings:
|
80 |
+
self.node_embeddings = self.node_embeddings[index]
|
81 |
+
|
82 |
+
if include_projections:
|
83 |
+
def select_projection(x, index):
|
84 |
+
if len(x.shape) > 3:
|
85 |
+
return x[:,index,:,:]
|
86 |
+
else:
|
87 |
+
return x[index]
|
88 |
+
|
89 |
+
self.node_projections = {key : select_projection(self.node_projections[key], index)
|
90 |
+
for key in self.node_projections}
|
91 |
+
|
utils/build_dataset.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fleet_beam_search_3.dataloader import VRP_Dataset
|
2 |
+
|
3 |
+
|
4 |
+
VRP_Dataset(dataset_size=1000)
|
utils/gradient_clipping.py
ADDED
File without changes
|