Create build_data.py
Browse files- build_data.py +84 -0
build_data.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime
|
3 |
+
import sys
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
|
10 |
+
# Ensure project directory is included
|
11 |
+
|
12 |
+
class Raw_VRP_Data(object):
|
13 |
+
|
14 |
+
def __init__(self, dataset_size=1000, num_nodes=50, num_depots=1):
|
15 |
+
|
16 |
+
self.dataset_size = dataset_size
|
17 |
+
self.num_nodes = num_nodes
|
18 |
+
num_cars = num_nodes
|
19 |
+
self.num_depots = num_depots
|
20 |
+
|
21 |
+
# fleet data
|
22 |
+
launch_time = torch.zeros(self.dataset_size, num_cars, 1)
|
23 |
+
car_start_node = torch.randint(low=0, high=num_depots, size=(self.dataset_size, num_cars, 1))
|
24 |
+
|
25 |
+
fleet = {
|
26 |
+
'start_time': launch_time,
|
27 |
+
'car_start_node': car_start_node,
|
28 |
+
}
|
29 |
+
|
30 |
+
# graph data
|
31 |
+
a = torch.arange(num_nodes).reshape(1, 1, -1).repeat(self.dataset_size, num_cars, 1)
|
32 |
+
b = car_start_node.repeat(1, 1, num_nodes)
|
33 |
+
depot = ((a == b).sum(dim=1) > 0).float().unsqueeze(2)
|
34 |
+
|
35 |
+
start_times = (torch.rand(self.dataset_size, num_nodes, 1) * 2 + 3) * (1 - depot)
|
36 |
+
end_times = start_times + (0.1 + 0.5 * torch.rand(self.dataset_size, num_nodes, 1)) * (1 - depot)
|
37 |
+
|
38 |
+
node_positions = torch.rand(dataset_size, num_nodes, 2)
|
39 |
+
distance_matrix = self.compute_distance_matrix(node_positions)
|
40 |
+
time_matrix = distance_matrix.clone()
|
41 |
+
|
42 |
+
graph = {
|
43 |
+
'start_times': start_times,
|
44 |
+
'end_times': end_times,
|
45 |
+
'depot': depot,
|
46 |
+
'node_vector': node_positions,
|
47 |
+
'distance_matrix': distance_matrix,
|
48 |
+
'time_matrix': time_matrix
|
49 |
+
}
|
50 |
+
|
51 |
+
self.data = {
|
52 |
+
'fleet': fleet,
|
53 |
+
'graph': graph
|
54 |
+
}
|
55 |
+
|
56 |
+
def compute_distance_matrix(self, node_positions):
|
57 |
+
x = node_positions.unsqueeze(1).repeat(1, self.num_nodes, 1, 1)
|
58 |
+
y = node_positions.unsqueeze(2).repeat(1, 1, self.num_nodes, 1)
|
59 |
+
distance = (((x - y)**2).sum(dim=3))**0.5
|
60 |
+
return distance
|
61 |
+
|
62 |
+
def get_data(self):
|
63 |
+
return self.data
|
64 |
+
|
65 |
+
def save_data(self, fp):
|
66 |
+
torch.save(self.data, fp)
|
67 |
+
|
68 |
+
|
69 |
+
if __name__ == '__main__':
|
70 |
+
|
71 |
+
size = 50000
|
72 |
+
num_nodes = 30
|
73 |
+
num_depots = 1
|
74 |
+
|
75 |
+
start = datetime.now()
|
76 |
+
|
77 |
+
raw_data = Raw_VRP_Data(dataset_size=size, num_nodes=num_nodes, num_depots=num_depots)
|
78 |
+
|
79 |
+
path = os.path.join(os.getcwd(), 'VRP_data.pt')
|
80 |
+
raw_data.save_data(path)
|
81 |
+
|
82 |
+
end = datetime.now()
|
83 |
+
duration = (end - start).seconds
|
84 |
+
print(f"Data generation completed in {duration} seconds.")
|