Update run.py
Browse files
run.py
CHANGED
@@ -8,6 +8,7 @@ import torch.optim as optim
|
|
8 |
from torch.utils.data import DataLoader
|
9 |
import json
|
10 |
|
|
|
11 |
dir_path = os.path.dirname(os.path.realpath(__file__))
|
12 |
sys.path.append(os.path.join(dir_path, '..'))
|
13 |
|
@@ -16,41 +17,27 @@ from Actor.actor import Actor
|
|
16 |
from dataloader import VRP_Dataset
|
17 |
from google_solver.google_model import evaluate_google_model
|
18 |
|
19 |
-
#
|
20 |
with open('params.json', 'r') as f:
|
21 |
params = json.load(f)
|
22 |
|
23 |
-
#
|
|
|
|
|
|
|
|
|
|
|
24 |
device = params['device']
|
25 |
run_tests = params['run_tests']
|
26 |
save_results = params['save_results']
|
27 |
dataset_path = params['dataset_path']
|
28 |
|
29 |
-
#
|
30 |
-
results_dir = os.path.join('/data', 'results')
|
31 |
-
os.makedirs(results_dir, exist_ok=True)
|
32 |
-
|
33 |
-
now = datetime.now()
|
34 |
-
dt_string = now.strftime("%d-%m-%y %H-%M-%S")
|
35 |
-
experiment_path = os.path.join(results_dir, dt_string)
|
36 |
-
os.makedirs(experiment_path, exist_ok=True)
|
37 |
-
|
38 |
-
train_results_file = os.path.join(experiment_path, 'train_results.txt')
|
39 |
-
test_results_file = os.path.join(experiment_path, 'test_results.txt')
|
40 |
-
model_path = os.path.join(experiment_path, 'model_state_dict.pt')
|
41 |
-
optimizer_path = os.path.join(experiment_path, 'optimizer_state_dict.pt')
|
42 |
-
|
43 |
-
with open(train_results_file, 'w') as f: pass
|
44 |
-
with open(test_results_file, 'w') as f: pass
|
45 |
-
with open(os.path.join(experiment_path, 'params.json'), 'w') as f:
|
46 |
-
json.dump(params, f)
|
47 |
-
|
48 |
-
# Dataset sizes
|
49 |
train_dataset_size = params['train_dataset_size']
|
50 |
validation_dataset_size = params['validation_dataset_size']
|
51 |
baseline_dataset_size = params['baseline_dataset_size']
|
52 |
|
53 |
-
#
|
54 |
num_nodes = params['num_nodes']
|
55 |
num_depots = params['num_depots']
|
56 |
embedding_size = params['embedding_size']
|
@@ -62,23 +49,19 @@ num_movers = params['num_movers']
|
|
62 |
learning_rate = params['learning_rate']
|
63 |
batch_size = params['batch_size']
|
64 |
test_batch_size = params['test_batch_size']
|
65 |
-
baseline_update_period = params['baseline_update_period']
|
66 |
|
67 |
-
#
|
68 |
validation_dataset = VRP_Dataset(validation_dataset_size, num_nodes, num_depots, dataset_path, device)
|
69 |
baseline_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)
|
70 |
-
|
71 |
if params['overfit_test']:
|
72 |
-
train_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)
|
73 |
-
baseline_dataset = train_dataset
|
74 |
-
validation_dataset = train_dataset
|
75 |
|
76 |
-
#
|
77 |
google_scores = evaluate_google_model(validation_dataset)
|
78 |
tot_google_scores = google_scores.sum().item()
|
79 |
input_size = validation_dataset.model_input_length()
|
80 |
|
81 |
-
#
|
82 |
model = Model(input_size=input_size, embedding_size=embedding_size, decoder_input_size=params["decoder_input_size"])
|
83 |
actor = Actor(model=model, num_movers=num_movers, num_neighbors_encoder=num_neighbors_encoder,
|
84 |
num_neighbors_action=num_neighbors_action, device=device, normalize=False)
|
@@ -95,11 +78,17 @@ nn_actor.nearest_neighbors()
|
|
95 |
|
96 |
optimizer = optim.Adam(params=actor.parameters(), lr=learning_rate)
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
train_batch_record = 100
|
99 |
validation_record = 100
|
100 |
baseline_record = None
|
101 |
|
102 |
-
#
|
103 |
for epoch in range(params['num_epochs']):
|
104 |
if not params['overfit_test']:
|
105 |
train_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)
|
@@ -107,7 +96,6 @@ for epoch in range(params['num_epochs']):
|
|
107 |
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=train_dataset.collate)
|
108 |
for i, batch in enumerate(train_dataloader):
|
109 |
with torch.no_grad():
|
110 |
-
nn_actor.nearest_neighbors()
|
111 |
nn_output = nn_actor(batch)
|
112 |
tot_nn_cost = nn_output['total_time'].sum().item()
|
113 |
|
@@ -129,75 +117,66 @@ for epoch in range(params['num_epochs']):
|
|
129 |
|
130 |
tot_actor_cost = actor_cost.sum().item()
|
131 |
tot_baseline_cost = baseline_cost.sum().item()
|
132 |
-
|
133 |
actor_nn_ratio = tot_actor_cost / tot_nn_cost
|
134 |
actor_baseline_ratio = tot_actor_cost / tot_baseline_cost
|
135 |
train_batch_record = min(train_batch_record, actor_nn_ratio)
|
136 |
|
137 |
result = f"{epoch}, {i}, {actor_nn_ratio:.4f}, {actor_baseline_ratio:.4f}, {train_batch_record:.4f}"
|
138 |
-
print(result
|
139 |
if save_results:
|
140 |
with open(train_results_file, 'a') as f:
|
141 |
f.write(result + '\n')
|
142 |
del batch
|
143 |
|
144 |
-
#
|
145 |
if epoch % 5 == 0:
|
146 |
baseline_dataloader = DataLoader(baseline_dataset, batch_size=batch_size, collate_fn=baseline_dataset.collate)
|
147 |
tot_cost = []
|
148 |
for batch in baseline_dataloader:
|
149 |
with torch.no_grad():
|
150 |
actor.greedy_search()
|
151 |
-
|
152 |
-
cost = actor_output['total_time']
|
153 |
tot_cost.append(cost)
|
154 |
-
del batch
|
155 |
-
|
156 |
tot_cost = torch.cat(tot_cost, dim=0)
|
157 |
if baseline_record is None or (tot_cost < baseline_record).float().mean().item() > 0.9:
|
158 |
baseline_record = tot_cost
|
159 |
baseline_actor.load_state_dict(actor.state_dict())
|
160 |
print('\nNew baseline record\n')
|
161 |
|
|
|
|
|
|
|
|
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
for batch in validation_dataloader:
|
171 |
-
with torch.no_grad():
|
172 |
-
actor.beam_search(sample_size)
|
173 |
-
actor_output = actor(batch)
|
174 |
-
cost = actor_output['total_time']
|
175 |
-
|
176 |
-
nn_actor.nearest_neighbors()
|
177 |
-
nn_output = nn_actor(batch)
|
178 |
-
nn_cost = nn_output['total_time']
|
179 |
-
|
180 |
-
tot_cost += cost.sum().item()
|
181 |
-
tot_nn_cost += nn_cost.sum().item()
|
182 |
-
|
183 |
-
ratio = tot_cost / tot_nn_cost
|
184 |
-
validation_record = min(validation_record, ratio)
|
185 |
-
actor_google_ratio = tot_cost / tot_google_scores
|
186 |
|
187 |
-
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
with open(test_results_file, 'a') as f:
|
192 |
-
f.write(f"{epoch}, {actor_google_ratio:.4f}, {ratio:.4f}, {validation_record:.4f}\n")
|
193 |
-
|
194 |
-
# حفظ النموذج والـ optimizer دائمًا
|
195 |
-
torch.save(actor.state_dict(), model_path)
|
196 |
-
torch.save(optimizer.state_dict(), optimizer_path)
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
|
|
201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
print("End.")
|
|
|
8 |
from torch.utils.data import DataLoader
|
9 |
import json
|
10 |
|
11 |
+
# إعداد المسارات
|
12 |
dir_path = os.path.dirname(os.path.realpath(__file__))
|
13 |
sys.path.append(os.path.join(dir_path, '..'))
|
14 |
|
|
|
17 |
from dataloader import VRP_Dataset
|
18 |
from google_solver.google_model import evaluate_google_model
|
19 |
|
20 |
+
# تحميل الإعدادات
|
21 |
with open('params.json', 'r') as f:
|
22 |
params = json.load(f)
|
23 |
|
24 |
+
# حفظ نسخة من الإعدادات
|
25 |
+
os.makedirs("/data", exist_ok=True)
|
26 |
+
with open('/data/params_saved.json', 'w') as f:
|
27 |
+
json.dump(params, f)
|
28 |
+
|
29 |
+
# إعداد المتغيرات
|
30 |
device = params['device']
|
31 |
run_tests = params['run_tests']
|
32 |
save_results = params['save_results']
|
33 |
dataset_path = params['dataset_path']
|
34 |
|
35 |
+
# حجم البيانات
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
train_dataset_size = params['train_dataset_size']
|
37 |
validation_dataset_size = params['validation_dataset_size']
|
38 |
baseline_dataset_size = params['baseline_dataset_size']
|
39 |
|
40 |
+
# خصائص المشكلة
|
41 |
num_nodes = params['num_nodes']
|
42 |
num_depots = params['num_depots']
|
43 |
embedding_size = params['embedding_size']
|
|
|
49 |
learning_rate = params['learning_rate']
|
50 |
batch_size = params['batch_size']
|
51 |
test_batch_size = params['test_batch_size']
|
|
|
52 |
|
53 |
+
# التحميل
|
54 |
validation_dataset = VRP_Dataset(validation_dataset_size, num_nodes, num_depots, dataset_path, device)
|
55 |
baseline_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)
|
|
|
56 |
if params['overfit_test']:
|
57 |
+
train_dataset = baseline_dataset = validation_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)
|
|
|
|
|
58 |
|
59 |
+
# تقييم Google OR-Tools
|
60 |
google_scores = evaluate_google_model(validation_dataset)
|
61 |
tot_google_scores = google_scores.sum().item()
|
62 |
input_size = validation_dataset.model_input_length()
|
63 |
|
64 |
+
# تعريف النماذج
|
65 |
model = Model(input_size=input_size, embedding_size=embedding_size, decoder_input_size=params["decoder_input_size"])
|
66 |
actor = Actor(model=model, num_movers=num_movers, num_neighbors_encoder=num_neighbors_encoder,
|
67 |
num_neighbors_action=num_neighbors_action, device=device, normalize=False)
|
|
|
78 |
|
79 |
optimizer = optim.Adam(params=actor.parameters(), lr=learning_rate)
|
80 |
|
81 |
+
# ملفات الإخراج
|
82 |
+
train_results_file = "/data/train_results.txt"
|
83 |
+
test_results_file = "/data/test_results.txt"
|
84 |
+
model_path = "/data/model_state_dict.pt"
|
85 |
+
optimizer_path = "/data/optimizer_state_dict.pt"
|
86 |
+
|
87 |
train_batch_record = 100
|
88 |
validation_record = 100
|
89 |
baseline_record = None
|
90 |
|
91 |
+
# التدريب
|
92 |
for epoch in range(params['num_epochs']):
|
93 |
if not params['overfit_test']:
|
94 |
train_dataset = VRP_Dataset(train_dataset_size, num_nodes, num_depots, dataset_path, device)
|
|
|
96 |
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, collate_fn=train_dataset.collate)
|
97 |
for i, batch in enumerate(train_dataloader):
|
98 |
with torch.no_grad():
|
|
|
99 |
nn_output = nn_actor(batch)
|
100 |
tot_nn_cost = nn_output['total_time'].sum().item()
|
101 |
|
|
|
117 |
|
118 |
tot_actor_cost = actor_cost.sum().item()
|
119 |
tot_baseline_cost = baseline_cost.sum().item()
|
|
|
120 |
actor_nn_ratio = tot_actor_cost / tot_nn_cost
|
121 |
actor_baseline_ratio = tot_actor_cost / tot_baseline_cost
|
122 |
train_batch_record = min(train_batch_record, actor_nn_ratio)
|
123 |
|
124 |
result = f"{epoch}, {i}, {actor_nn_ratio:.4f}, {actor_baseline_ratio:.4f}, {train_batch_record:.4f}"
|
125 |
+
print(result)
|
126 |
if save_results:
|
127 |
with open(train_results_file, 'a') as f:
|
128 |
f.write(result + '\n')
|
129 |
del batch
|
130 |
|
131 |
+
# التحقق من الأد��ء
|
132 |
if epoch % 5 == 0:
|
133 |
baseline_dataloader = DataLoader(baseline_dataset, batch_size=batch_size, collate_fn=baseline_dataset.collate)
|
134 |
tot_cost = []
|
135 |
for batch in baseline_dataloader:
|
136 |
with torch.no_grad():
|
137 |
actor.greedy_search()
|
138 |
+
cost = actor(batch)['total_time']
|
|
|
139 |
tot_cost.append(cost)
|
|
|
|
|
140 |
tot_cost = torch.cat(tot_cost, dim=0)
|
141 |
if baseline_record is None or (tot_cost < baseline_record).float().mean().item() > 0.9:
|
142 |
baseline_record = tot_cost
|
143 |
baseline_actor.load_state_dict(actor.state_dict())
|
144 |
print('\nNew baseline record\n')
|
145 |
|
146 |
+
# التقييم وحفظ النموذج
|
147 |
+
if run_tests:
|
148 |
+
b = max(int(batch_size // sample_size**2), 1)
|
149 |
+
validation_dataloader = DataLoader(validation_dataset, batch_size=b, collate_fn=validation_dataset.collate)
|
150 |
|
151 |
+
tot_cost = 0
|
152 |
+
tot_nn_cost = 0
|
153 |
+
for batch in validation_dataloader:
|
154 |
+
with torch.no_grad():
|
155 |
+
actor.beam_search(sample_size)
|
156 |
+
actor_output = actor(batch)
|
157 |
+
cost = actor_output['total_time']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
nn_output = nn_actor(batch)
|
160 |
+
nn_cost = nn_output['total_time']
|
161 |
|
162 |
+
tot_cost += cost.sum().item()
|
163 |
+
tot_nn_cost += nn_cost.sum().item()
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
ratio = tot_cost / tot_nn_cost
|
166 |
+
validation_record = min(validation_record, ratio)
|
167 |
+
actor_google_ratio = tot_cost / tot_google_scores
|
168 |
+
print(f"\nTest results:\nActor/Google: {actor_google_ratio:.4f}, Actor/NN: {ratio:.4f}, Best NN Ratio: {validation_record:.4f}\n")
|
169 |
|
170 |
+
if save_results:
|
171 |
+
# حفظ دائم
|
172 |
+
with open(test_results_file, 'a') as f:
|
173 |
+
f.write(f"{epoch}, {actor_google_ratio:.4f}, {ratio:.4f}, {validation_record:.4f}\n")
|
174 |
+
torch.save(actor.state_dict(), model_path)
|
175 |
+
torch.save(optimizer.state_dict(), optimizer_path)
|
176 |
+
|
177 |
+
# نسخة احتياطية كل 10 epochs
|
178 |
+
if epoch % 10 == 0:
|
179 |
+
torch.save(actor.state_dict(), f"/data/model_epoch_{epoch}.pt")
|
180 |
+
torch.save(optimizer.state_dict(), f"/data/optimizer_epoch_{epoch}.pt")
|
181 |
|
182 |
print("End.")
|