Delete actor.py
Browse files
actor.py
DELETED
@@ -1,751 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
-
from Actor.graph import Graph
|
5 |
-
from Actor.fleet import Fleet
|
6 |
-
from utils.actor_utils import widen_data, select_data
|
7 |
-
from Actor.normalization import Normalization
|
8 |
-
|
9 |
-
|
10 |
-
#This is the updated version of the actor
|
11 |
-
class Actor(nn.Module):
|
12 |
-
|
13 |
-
def __init__(self, model=None, num_movers=5, num_neighbors_encoder=5,
|
14 |
-
num_neighbors_action=5, normalize=False, use_fleet_attention=True,
|
15 |
-
device='cpu'):
|
16 |
-
super().__init__()
|
17 |
-
|
18 |
-
self.device = device
|
19 |
-
self.num_movers = num_movers
|
20 |
-
self.num_neighbors_encoder = num_neighbors_encoder
|
21 |
-
self.num_neighbors_action = num_neighbors_action
|
22 |
-
|
23 |
-
self.apply_normalization = normalize
|
24 |
-
self.normalization = None
|
25 |
-
self.use_fleet_attention = use_fleet_attention
|
26 |
-
|
27 |
-
|
28 |
-
if model is None:
|
29 |
-
self.mode = 'nearest_neighbors'
|
30 |
-
else:
|
31 |
-
self.encoder = model.encoder.to(self.device)
|
32 |
-
self.decoder = model.decoder.to(self.device)
|
33 |
-
self.projections = model.projections.to(self.device)
|
34 |
-
self.fleet_attention = model.fleet_attention.to(self.device)
|
35 |
-
self.mode = 'train'
|
36 |
-
|
37 |
-
|
38 |
-
self.sample_size = 1
|
39 |
-
|
40 |
-
|
41 |
-
def train_mode(self, sample_size=1):
|
42 |
-
self.train()
|
43 |
-
self.sample_size = sample_size
|
44 |
-
self.mode = 'train'
|
45 |
-
|
46 |
-
|
47 |
-
def greedy_search(self):
|
48 |
-
self.eval()
|
49 |
-
self.mode = 'greedy'
|
50 |
-
|
51 |
-
|
52 |
-
def nearest_neighbors(self):
|
53 |
-
self.eval()
|
54 |
-
self.mode = 'nearest_neighbors'
|
55 |
-
|
56 |
-
|
57 |
-
def sample_mode(self, sample_size=10):
|
58 |
-
self.sample_size = sample_size
|
59 |
-
self.eval()
|
60 |
-
self.mode = 'sample'
|
61 |
-
|
62 |
-
|
63 |
-
def beam_search(self, sample_size=10):
|
64 |
-
self.sample_size=sample_size
|
65 |
-
self.eval()
|
66 |
-
self.mode = 'beam_search'
|
67 |
-
|
68 |
-
|
69 |
-
def update_batch_size(self):
|
70 |
-
self.batch_size = self.fleet.time.shape[0]
|
71 |
-
self.fleet.batch_size = self.fleet.time.shape[0]
|
72 |
-
self.graph.batch_size = self.fleet.time.shape[0]
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
def forward(self, batch, *args, **kwargs):
|
77 |
-
|
78 |
-
graph_data, fleet_data = batch
|
79 |
-
|
80 |
-
self.original_batch_size = graph_data['distance_matrix'].shape[0]
|
81 |
-
self.batch_size = self.original_batch_size
|
82 |
-
|
83 |
-
self.num_nodes = graph_data['distance_matrix'].shape[1]
|
84 |
-
self.num_cars = fleet_data['start_time'].shape[1]
|
85 |
-
|
86 |
-
|
87 |
-
self.graph = Graph(graph_data, device=self.device)
|
88 |
-
self.fleet = Fleet(fleet_data, num_nodes=self.num_nodes, device=self.device)
|
89 |
-
self.num_nodes = self.graph.distance_matrix.shape[1]
|
90 |
-
self.update_batch_size()
|
91 |
-
|
92 |
-
self.normalization = Normalization(self, normalize_position=True)
|
93 |
-
if self.apply_normalization:
|
94 |
-
self.normalization.normalize(self)
|
95 |
-
|
96 |
-
self.num_depots = self.fleet.num_depots.max().item()
|
97 |
-
self.num_movers_corrected = int(min(max(self.num_movers, self.num_depots), self.num_cars))
|
98 |
-
|
99 |
-
|
100 |
-
if self.mode != 'nearest_neighbors':
|
101 |
-
encoder_input = self.graph.construct_vector()
|
102 |
-
encoder_mask = self.compute_encoder_mask()
|
103 |
-
self.node_embeddings = self.encoder(encoder_input, encoder_mask)
|
104 |
-
self.node_projections = self.projections(self.node_embeddings)
|
105 |
-
|
106 |
-
|
107 |
-
if self.mode == 'sample':
|
108 |
-
widen_data(self, include_embeddings=True, include_projections=True)
|
109 |
-
self.update_batch_size()
|
110 |
-
|
111 |
-
|
112 |
-
self.log_probs = torch.zeros(self.batch_size).to(self.device)
|
113 |
-
self.counter = 0
|
114 |
-
while self.loop_condition() and (self.counter < self.num_nodes*4):
|
115 |
-
|
116 |
-
unavailable_moves = self.check_non_depot_options(use_time=True)
|
117 |
-
mover_indices = self.get_mover_indices(unavailable_moves=unavailable_moves)
|
118 |
-
action_mask = self.compute_action_mask(mover_indices=mover_indices,
|
119 |
-
unavailable_moves=unavailable_moves)
|
120 |
-
|
121 |
-
if self.mode != 'nearest_neighbors':
|
122 |
-
decoder_input = self.construct_decoder_input(mover_indices=mover_indices)
|
123 |
-
decoder_mask = self.compute_decoder_mask(mover_indices=mover_indices,
|
124 |
-
unavailable_moves=unavailable_moves)
|
125 |
-
|
126 |
-
decoder_output = self.decoder(decoder_input=decoder_input,
|
127 |
-
projections=self.node_projections,
|
128 |
-
mask=decoder_mask)
|
129 |
-
else:
|
130 |
-
decoder_output = None
|
131 |
-
|
132 |
-
next_node, car_to_move, log_prob = self.compute_action(decoder_output, action_mask, mover_indices)
|
133 |
-
|
134 |
-
if self.mode == 'beam_search':
|
135 |
-
widen_data(self, include_embeddings=True, include_projections=True)
|
136 |
-
self.update_batch_size()
|
137 |
-
|
138 |
-
self.log_probs += log_prob
|
139 |
-
|
140 |
-
self.update_time(next_node, car_to_move)
|
141 |
-
self.update_distance(next_node, car_to_move)
|
142 |
-
self.update_node_path(next_node, car_to_move)
|
143 |
-
self.update_traversed_nodes()
|
144 |
-
|
145 |
-
#self.return_to_depot()
|
146 |
-
#self.update_traversed_nodes()
|
147 |
-
|
148 |
-
if (self.mode == 'beam_search') and (self.counter > 0):
|
149 |
-
self.consolidate_beams()
|
150 |
-
|
151 |
-
self.update_batch_size()
|
152 |
-
self.counter += 1
|
153 |
-
|
154 |
-
self.return_to_depot_1()
|
155 |
-
|
156 |
-
|
157 |
-
if self.mode in {'beam_search', 'sample'}:
|
158 |
-
# we now must select out the best k elments
|
159 |
-
|
160 |
-
incomplete = self.check_complete().float()
|
161 |
-
cost = self.compute_cost()
|
162 |
-
|
163 |
-
max_cost = cost.max()
|
164 |
-
masked_cost = (1 - incomplete)*cost + incomplete*max_cost*10
|
165 |
-
|
166 |
-
p = masked_cost.reshape(self.original_batch_size, self.sample_size)
|
167 |
-
a = torch.argmin(p, dim=1)
|
168 |
-
|
169 |
-
b = torch.arange(self.original_batch_size).to(self.device)
|
170 |
-
b = b * self.sample_size
|
171 |
-
|
172 |
-
index = a + b
|
173 |
-
select_data(self, index=index, include_projections=True, include_embeddings=True)
|
174 |
-
|
175 |
-
|
176 |
-
self.update_batch_size()
|
177 |
-
if self.apply_normalization:
|
178 |
-
self.normalization.inverse_normalize(self)
|
179 |
-
|
180 |
-
total_distance = self.fleet.distance.sum(dim=1).squeeze(1).detach()
|
181 |
-
total_time = self.fleet.time.sum(dim=1).squeeze(1).detach()
|
182 |
-
total_late_time = self.fleet.late_time.sum(dim=1).squeeze(1).detach()
|
183 |
-
|
184 |
-
output = {
|
185 |
-
'distance': total_distance.detach(),
|
186 |
-
'total_time': total_time.detach(),
|
187 |
-
'log_probs': self.log_probs,
|
188 |
-
'late_time': total_late_time.detach(),
|
189 |
-
'incomplete': self.check_complete(),
|
190 |
-
'path': self.fleet.path,
|
191 |
-
'arrival_times': self.fleet.arrival_times
|
192 |
-
}
|
193 |
-
|
194 |
-
return output
|
195 |
-
|
196 |
-
|
197 |
-
def consolidate_beams(self):
|
198 |
-
p = self.log_probs.reshape(self.original_batch_size, self.sample_size * self.sample_size)
|
199 |
-
a = torch.topk(p, dim=1, k=self.sample_size, largest=True)[1]
|
200 |
-
|
201 |
-
b = torch.arange(self.original_batch_size).unsqueeze(1).repeat(1, self.sample_size).to(self.device)
|
202 |
-
b = b * self.sample_size * self.sample_size
|
203 |
-
|
204 |
-
ind = (a + b).reshape(-1)
|
205 |
-
select_data(self, index=ind, include_projections=True, include_embeddings=True)
|
206 |
-
|
207 |
-
|
208 |
-
def adjust_arrival_times(self):
|
209 |
-
|
210 |
-
if self.apply_normalization and (self.normalization_params is not None):
|
211 |
-
num_steps = self.fleet.arrival_times.shape[2]
|
212 |
-
a = self.normalization_params['earliest_start_time'].reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, num_steps)
|
213 |
-
b = self.normalization_params['greatest_drive_time'].reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, num_steps)
|
214 |
-
self.fleet.arrival_times = self.fleet.arrival_times*b + a
|
215 |
-
|
216 |
-
a = self.normalization_params['earliest_start_time']
|
217 |
-
b = self.normalization_params['greatest_drive_time']
|
218 |
-
self.fleet.late_time = self.fleet.late_time*b + a
|
219 |
-
|
220 |
-
|
221 |
-
def compute_encoder_mask(self):
|
222 |
-
#check for drive times being too long
|
223 |
-
time_window_non_compatibility = 1 - self.graph.time_window_compatibility
|
224 |
-
|
225 |
-
#compute diag mask
|
226 |
-
diag = torch.diag(torch.ones(self.num_nodes)).unsqueeze(0).repeat(self.batch_size, 1, 1).to(self.device)
|
227 |
-
|
228 |
-
# compute neighbors mask
|
229 |
-
m = (time_window_non_compatibility + diag > 0).float()
|
230 |
-
|
231 |
-
dist = self.graph.distance_matrix*(1 - m) + m*self.graph.max_dist*10
|
232 |
-
|
233 |
-
K = min(self.num_nodes, self.num_neighbors_encoder)
|
234 |
-
neighbors_index = torch.topk(dist, k=K, dim=2, largest=False)[1] # ~ [batch, num_nodes, num_neighbors]
|
235 |
-
|
236 |
-
a = torch.arange(self.num_nodes).reshape(1, 1, -1, 1).repeat(self.batch_size, self.num_nodes, 1, K).to(self.device)
|
237 |
-
b = neighbors_index.unsqueeze(2).repeat(1, 1, self.num_nodes, 1)
|
238 |
-
neighbors_mask = (a == b).float().sum(dim=3)
|
239 |
-
|
240 |
-
|
241 |
-
m = (time_window_non_compatibility == 0).float()
|
242 |
-
neighbs_time_mask = neighbors_mask*m
|
243 |
-
|
244 |
-
#compute depot mask
|
245 |
-
v = self.graph.depot.reshape(self.batch_size, 1, self.num_nodes).repeat(1, self.num_nodes, 1)
|
246 |
-
w = self.graph.depot.reshape(self.batch_size, self.num_nodes, 1).repeat(1, 1, self.num_nodes)
|
247 |
-
depot_mask = (v + w > 0).float()
|
248 |
-
|
249 |
-
diag = torch.diag(torch.ones(self.num_nodes)).unsqueeze(0).repeat(self.batch_size, 1, 1).to(self.device)
|
250 |
-
|
251 |
-
mask = (neighbs_time_mask + depot_mask + diag > 0).float()
|
252 |
-
return mask
|
253 |
-
|
254 |
-
|
255 |
-
def compute_depoyment_priority_score(self):
|
256 |
-
#number of available nodes
|
257 |
-
available_nodes = (self.check_non_depot_options().float() == 0).float()
|
258 |
-
num_available_nodes = available_nodes.sum(dim=2)
|
259 |
-
|
260 |
-
#excess
|
261 |
-
ind = self.fleet.node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
262 |
-
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind)
|
263 |
-
|
264 |
-
max_distance = self.graph.distance_matrix.reshape(self.batch_size, -1).max(dim=1)[0].reshape(
|
265 |
-
self.batch_size, 1, 1).repeat(1, self.num_cars, self.num_nodes)
|
266 |
-
excess = ((max_distance - distances)*available_nodes).sum(dim=2)
|
267 |
-
|
268 |
-
|
269 |
-
max_excess = excess.max()
|
270 |
-
|
271 |
-
score = (num_available_nodes + max_excess)*10 + excess
|
272 |
-
return score
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
def check_complete(self):
|
277 |
-
has_untraversed_nodes = ((self.fleet.traversed_nodes == 0).float().sum(dim=1) > 0)
|
278 |
-
#has_cars_in_field = ((self.fleet.node != self.fleet.depot).sum(dim=1) > 0)
|
279 |
-
#incomplete = (has_untraversed_nodes | has_cars_in_field)
|
280 |
-
incomplete = has_untraversed_nodes
|
281 |
-
return incomplete
|
282 |
-
|
283 |
-
|
284 |
-
def loop_condition(self):
|
285 |
-
a = self.check_complete().sum().item()
|
286 |
-
if a == 0:
|
287 |
-
return False
|
288 |
-
else:
|
289 |
-
return True
|
290 |
-
|
291 |
-
|
292 |
-
def compute_cost(self):
|
293 |
-
|
294 |
-
dist = self.fleet.distance.sum(dim=1).squeeze(1)
|
295 |
-
time = self.fleet.time.sum(dim=1).squeeze(1)
|
296 |
-
lateness = self.fleet.late_time.sum(dim=1).squeeze(1)
|
297 |
-
|
298 |
-
#normally we compute the cost as a linear combination of these three quantities
|
299 |
-
return time
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
def compute_total_distance(self):
|
304 |
-
p_2 = self.fleet.path
|
305 |
-
p_1 = torch.cat([p_2[:,:,-1:], p_2[:,:,:-1]], dim=2)
|
306 |
-
|
307 |
-
mat = self.graph.distance_matrix.reshape(self.batch_size, 1, self.num_nodes, self.num_nodes).repeat(1, self.num_cars, 1, 1)
|
308 |
-
ind_1 = p_1.unsqueeze(3).repeat(1, 1, 1, self.num_nodes)
|
309 |
-
|
310 |
-
d = torch.gather(mat, dim=2, index=ind_1)
|
311 |
-
ind_2 = p_2.unsqueeze(3)
|
312 |
-
pairwise_distances = torch.gather(d, dim=3, index=ind_2).squeeze(3)
|
313 |
-
|
314 |
-
self.car_distances = pairwise_distances.sum(dim=2)
|
315 |
-
self.total_distance = self.car_distances.sum(dim=1)
|
316 |
-
|
317 |
-
if self.apply_normalization and (self.normalization_params is not None):
|
318 |
-
distance_multiplier = self.normalization_params['greatest_distance']
|
319 |
-
self.total_distance = self.total_distance*distance_multiplier.reshape(self.batch_size)
|
320 |
-
|
321 |
-
return self.total_distance
|
322 |
-
|
323 |
-
|
324 |
-
def update_traversed_nodes(self):
|
325 |
-
|
326 |
-
path_length = self.fleet.path.shape[2]
|
327 |
-
a = self.fleet.path.reshape(self.batch_size, self.num_cars, path_length, 1).repeat(1, 1, 1, self.num_nodes)
|
328 |
-
b = torch.arange(self.num_nodes).reshape(
|
329 |
-
1, 1, 1, self.num_nodes).repeat(
|
330 |
-
self.batch_size, self.num_cars, path_length, 1).to(self.device)
|
331 |
-
|
332 |
-
s = (a == b).float().reshape(self.batch_size, self.num_cars*path_length, self.num_nodes).sum(dim=1)
|
333 |
-
self.fleet.traversed_nodes = (s > 0).float()
|
334 |
-
|
335 |
-
|
336 |
-
def compute_action(self, decoder_output, action_mask, mover_indices):
|
337 |
-
|
338 |
-
if self.mode == 'nearest_neighbors':
|
339 |
-
|
340 |
-
assert decoder_output is None
|
341 |
-
|
342 |
-
num_movers = mover_indices.shape[1]
|
343 |
-
mover_nodes = torch.gather(self.fleet.node, dim=1, index=mover_indices)
|
344 |
-
|
345 |
-
ind = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
346 |
-
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind)
|
347 |
-
|
348 |
-
a = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
349 |
-
b = torch.arange(self.num_nodes).reshape(1, 1, self.num_nodes).repeat(self.batch_size, num_movers, 1).to(self.device)
|
350 |
-
current_node_indicator = (a == b).float()
|
351 |
-
|
352 |
-
a = action_mask.reshape(self.batch_size, -1)
|
353 |
-
no_options = (a.sum(dim=1) == 0).reshape(-1, 1, 1).repeat(1, num_movers, self.num_nodes).float()
|
354 |
-
|
355 |
-
mask = action_mask * (1 - no_options) + current_node_indicator * no_options
|
356 |
-
masked_distances = distances*mask + self.graph.max_dist*(1 - mask)*10
|
357 |
-
|
358 |
-
x = masked_distances.reshape(self.batch_size, -1)
|
359 |
-
ind = torch.argmin(x, dim=1).unsqueeze(1)
|
360 |
-
|
361 |
-
mover_index = ind // self.num_nodes
|
362 |
-
next_node = ind % self.num_nodes
|
363 |
-
car_to_move = torch.gather(mover_indices, dim=1, index=mover_index)
|
364 |
-
|
365 |
-
log_prob = torch.zeros(self.batch_size).to(self.device)
|
366 |
-
return next_node, car_to_move, log_prob
|
367 |
-
|
368 |
-
else:
|
369 |
-
|
370 |
-
assert decoder_output is not None
|
371 |
-
|
372 |
-
num_movers = mover_indices.shape[1]
|
373 |
-
assert (num_movers == action_mask.shape[1]) and (num_movers == decoder_output.shape[1])
|
374 |
-
|
375 |
-
a = action_mask.reshape(self.batch_size, -1)
|
376 |
-
no_options = (a.sum(dim=1) == 0).reshape(-1, 1, 1).repeat(1, num_movers, self.num_nodes).float()
|
377 |
-
|
378 |
-
mover_nodes = torch.gather(self.fleet.node, dim=1, index=mover_indices)
|
379 |
-
a = torch.arange(self.num_nodes).reshape(1, 1, -1).repeat(self.batch_size, num_movers, 1).to(self.device)
|
380 |
-
b = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
381 |
-
default_option = (a == b).float()
|
382 |
-
|
383 |
-
mask = action_mask*(1 - no_options) + default_option*no_options
|
384 |
-
masked_decoder_output = decoder_output + mask.log()
|
385 |
-
|
386 |
-
x = masked_decoder_output.reshape(self.batch_size, -1)
|
387 |
-
probs = torch.softmax(x, dim=1)
|
388 |
-
|
389 |
-
if self.mode == 'greedy':
|
390 |
-
prob, ind = torch.max(probs, dim=1)[0].unsqueeze(1), torch.argmax(probs, dim=1).unsqueeze(1)
|
391 |
-
|
392 |
-
elif self.mode in {'train', 'sample'}:
|
393 |
-
ind = torch.multinomial(probs, num_samples=1)
|
394 |
-
prob = torch.gather(probs, dim=1, index=ind)
|
395 |
-
|
396 |
-
elif self.mode == 'beam_search':
|
397 |
-
prob, ind = torch.topk(probs, dim=1, k=self.sample_size, largest=True)
|
398 |
-
|
399 |
-
mover_index = ind // self.num_nodes
|
400 |
-
next_node = ind % self.num_nodes
|
401 |
-
car_to_move = torch.gather(mover_indices, dim=1, index=mover_index)
|
402 |
-
|
403 |
-
next_node = next_node.reshape(-1)
|
404 |
-
car_to_move = car_to_move.reshape(-1)
|
405 |
-
prob = prob.reshape(-1)
|
406 |
-
|
407 |
-
return next_node, car_to_move, prob.log()
|
408 |
-
|
409 |
-
|
410 |
-
def update_distance(self, next_node, car_to_move):
|
411 |
-
ind = car_to_move.reshape(self.batch_size, 1)
|
412 |
-
n = self.fleet.node.reshape(self.batch_size, self.num_cars)
|
413 |
-
current_node = torch.gather(n, dim=1, index=ind).squeeze(1)
|
414 |
-
|
415 |
-
#compute distance to next node
|
416 |
-
ind_1 = current_node.reshape(-1, 1, 1).repeat(1, 1, self.num_nodes)
|
417 |
-
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind_1).squeeze(1)
|
418 |
-
ind_2 = next_node.reshape(-1, 1)
|
419 |
-
dist_to_next_node = torch.gather(distances, dim=1, index=ind_2).squeeze(1)
|
420 |
-
|
421 |
-
#compute current distance
|
422 |
-
t = self.fleet.distance.reshape(self.batch_size, self.num_cars)
|
423 |
-
current_distance = torch.gather(t, dim=1, index=car_to_move.reshape(self.batch_size, 1)).squeeze(1)
|
424 |
-
|
425 |
-
#compute updated_distance
|
426 |
-
updated_distance = current_distance + dist_to_next_node
|
427 |
-
|
428 |
-
#compute mover mask
|
429 |
-
a = torch.arange(self.num_cars).reshape(1, -1).repeat(self.batch_size, 1).to(self.device)
|
430 |
-
b = car_to_move.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
431 |
-
update_mask = (a == b).float().unsqueeze(2)
|
432 |
-
|
433 |
-
#update distance
|
434 |
-
t = updated_distance.reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, 1)
|
435 |
-
self.fleet.distance = self.fleet.distance * (1 - update_mask) + t * update_mask
|
436 |
-
|
437 |
-
|
438 |
-
def update_time(self, next_node, car_to_move):
|
439 |
-
#get current node of mover
|
440 |
-
ind = car_to_move.reshape(self.batch_size, 1)
|
441 |
-
n = self.fleet.node.reshape(self.batch_size, self.num_cars)
|
442 |
-
current_node = torch.gather(n, dim=1, index=ind).squeeze(1)
|
443 |
-
|
444 |
-
#compute time to next node
|
445 |
-
ind_1 = current_node.reshape(-1, 1, 1).repeat(1, 1, self.num_nodes)
|
446 |
-
drive_times = torch.gather(self.graph.time_matrix, dim=1, index=ind_1).squeeze(1)
|
447 |
-
ind_2 = next_node.reshape(-1, 1)
|
448 |
-
time_to_next_node = torch.gather(drive_times, dim=1, index=ind_2).squeeze(1)
|
449 |
-
|
450 |
-
#compute start time at next node
|
451 |
-
start_time = self.graph.start_time.reshape(self.batch_size, self.num_nodes)
|
452 |
-
ind = next_node.reshape(self.batch_size, 1)
|
453 |
-
next_start_time = torch.gather(start_time, dim=1, index=ind).squeeze(1)
|
454 |
-
|
455 |
-
#compute current time
|
456 |
-
t = self.fleet.time.reshape(self.batch_size, self.num_cars)
|
457 |
-
current_node_time = torch.gather(t, dim=1, index=car_to_move.reshape(self.batch_size, 1)).squeeze(1)
|
458 |
-
|
459 |
-
#compute updated_time
|
460 |
-
a = time_to_next_node + current_node_time
|
461 |
-
b = next_start_time
|
462 |
-
updated_time = (a > b).float()*a + (a <= b).float()*b
|
463 |
-
|
464 |
-
#compute end_time at next node
|
465 |
-
ind = next_node.reshape(-1, 1)
|
466 |
-
end_times = self.graph.end_time.reshape(self.batch_size, self.num_nodes)
|
467 |
-
end_time_next_node = torch.gather(end_times, dim=1, index=ind).squeeze(1)
|
468 |
-
late_time = F.relu(updated_time - end_time_next_node)
|
469 |
-
|
470 |
-
|
471 |
-
#compute mover mask
|
472 |
-
a = torch.arange(self.num_cars).reshape(1, -1).repeat(self.batch_size, 1).to(self.device)
|
473 |
-
b = car_to_move.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
474 |
-
update_mask = (a == b).float().unsqueeze(2)
|
475 |
-
|
476 |
-
#update time
|
477 |
-
t = updated_time.reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, 1)
|
478 |
-
self.fleet.time = self.fleet.time*(1 - update_mask) + t*update_mask
|
479 |
-
|
480 |
-
# update_late_time
|
481 |
-
l = late_time.reshape(self.batch_size, 1, 1).repeat(1, self.num_cars, 1)
|
482 |
-
self.fleet.late_time = self.fleet.late_time*(1 - update_mask) + l*update_mask
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
def update_node_path(self, next_node, car_to_move):
|
487 |
-
#compute mover mask
|
488 |
-
a = torch.arange(self.num_cars).reshape(1, -1).repeat(self.batch_size, 1).to(self.device)
|
489 |
-
b = car_to_move.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
490 |
-
update_mask = (a == b).long()
|
491 |
-
|
492 |
-
new_node = next_node.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
493 |
-
self.fleet.node = update_mask*new_node + self.fleet.node*(1 - update_mask)
|
494 |
-
|
495 |
-
L = [self.fleet.path, self.fleet.node.unsqueeze(2)]
|
496 |
-
self.fleet.path = torch.cat(L, dim=2)
|
497 |
-
|
498 |
-
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1)
|
499 |
-
H = [self.fleet.arrival_times, t]
|
500 |
-
self.fleet.arrival_times = torch.cat(H, dim=2)
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
def check_non_depot_options(self, use_time=True):
|
505 |
-
'''
|
506 |
-
Output is a byte tensor of shape [batch, num_cars, num_nodes] with entry (i,j) = 1 if
|
507 |
-
the move of car i to node j is invalid
|
508 |
-
'''
|
509 |
-
|
510 |
-
if use_time:
|
511 |
-
#check for arrival times
|
512 |
-
too_far = 1 - self.check_arival_times()
|
513 |
-
|
514 |
-
#is depot
|
515 |
-
a = self.fleet.depot.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
516 |
-
b = torch.arange(self.num_nodes).reshape(1, 1, -1).repeat(self.batch_size, self.num_cars, 1).to(self.device)
|
517 |
-
is_depot = (a == b)
|
518 |
-
|
519 |
-
#check traversed nodes
|
520 |
-
a = self.fleet.traversed_nodes.reshape(self.batch_size, 1, self.num_nodes).repeat(1, self.num_cars, 1)
|
521 |
-
traversed_nodes = (a == 1)
|
522 |
-
|
523 |
-
# has value of 1 if the move to that node is NOT possible
|
524 |
-
if use_time:
|
525 |
-
unavailable_moves = (too_far | is_depot | traversed_nodes)
|
526 |
-
else:
|
527 |
-
unavailable_moves = (is_depot | traversed_nodes)
|
528 |
-
|
529 |
-
return unavailable_moves
|
530 |
-
|
531 |
-
|
532 |
-
def compute_decoder_mask(self, mover_indices, unavailable_moves):
|
533 |
-
|
534 |
-
num_movers = mover_indices.shape[1]
|
535 |
-
|
536 |
-
mover_nodes = torch.gather(self.fleet.node, dim=1, index=mover_indices)
|
537 |
-
|
538 |
-
ind = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
539 |
-
unavailable_moves = torch.gather(unavailable_moves, dim=1, index=ind)
|
540 |
-
|
541 |
-
no_options = ((1 - unavailable_moves.float()).sum(dim=2) == 0).unsqueeze(2).repeat(1, 1, self.num_nodes).float()
|
542 |
-
|
543 |
-
a = mover_nodes.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
544 |
-
b = torch.arange(self.num_nodes).reshape(1, 1, -1).repeat(self.batch_size, num_movers, 1).to(self.device)
|
545 |
-
default_move = (a == b).float()
|
546 |
-
|
547 |
-
decoder_mask = (1 - unavailable_moves.float())*(1 - no_options) + default_move*no_options
|
548 |
-
return decoder_mask
|
549 |
-
|
550 |
-
|
551 |
-
def compute_action_mask(self, mover_indices, unavailable_moves):
|
552 |
-
|
553 |
-
if self.mode != 'nearest_neighbors':
|
554 |
-
######################################################
|
555 |
-
d = torch.diag(torch.ones(self.num_nodes)).unsqueeze(0).repeat(self.batch_size, 1, 1).to(self.device)
|
556 |
-
ind = self.fleet.node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
557 |
-
|
558 |
-
diag = torch.gather(d, dim=1, index=ind)
|
559 |
-
distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind)
|
560 |
-
m = (unavailable_moves.float() + diag > 0).float()
|
561 |
-
|
562 |
-
masked_distances = distances*(1 - m) + m*self.graph.max_dist*100
|
563 |
-
K = min(self.num_neighbors_action, self.num_nodes)
|
564 |
-
neighbor_indices = torch.topk(masked_distances, dim=2, k=K, largest=False)[1]
|
565 |
-
|
566 |
-
a = torch.arange(self.num_nodes).reshape(1, 1, -1, 1).repeat(self.batch_size, self.num_cars, 1, K).to(self.device)
|
567 |
-
b = neighbor_indices.reshape(self.batch_size, self.num_cars, 1, K).repeat(1, 1, self.num_nodes, 1)
|
568 |
-
|
569 |
-
non_neighbor_mask = ((a == b).float().sum(dim=3) == 0)
|
570 |
-
mask = 1 - (non_neighbor_mask | unavailable_moves).float()
|
571 |
-
######################################################
|
572 |
-
else:
|
573 |
-
mask = 1 - unavailable_moves.float()
|
574 |
-
|
575 |
-
num_movers = mover_indices.shape[1]
|
576 |
-
ind = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_nodes)
|
577 |
-
action_mask = torch.gather(mask, dim=1, index=ind)
|
578 |
-
return action_mask
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
def construct_decoder_input(self, mover_indices):
|
583 |
-
|
584 |
-
embedding_size = self.node_embeddings.shape[2]
|
585 |
-
mask = self.check_non_depot_options(use_time=True)
|
586 |
-
mask = mask.permute(0, 2, 1).unsqueeze(3).repeat(1, 1, 1, embedding_size).float()
|
587 |
-
|
588 |
-
node_vectors = self.node_embeddings.reshape(self.batch_size, self.num_nodes, 1, embedding_size).repeat(1, 1, self.num_cars, 1)
|
589 |
-
|
590 |
-
#depot vector
|
591 |
-
start_ind = self.fleet.depot.reshape(self.batch_size, 1, self.num_cars, 1).repeat(1, 1, 1, embedding_size)
|
592 |
-
a = torch.gather(node_vectors, dim=1, index=start_ind)
|
593 |
-
depot_vector = a.squeeze(1)
|
594 |
-
|
595 |
-
#current node vector
|
596 |
-
current_ind = self.fleet.node.reshape(self.batch_size, 1, self.num_cars, 1).repeat(1, 1, 1, embedding_size)
|
597 |
-
b = torch.gather(node_vectors, dim=1, index=current_ind)
|
598 |
-
current_node_vector = b.squeeze(1)
|
599 |
-
|
600 |
-
#mean graph vector
|
601 |
-
mean_graph_vector = node_vectors.mean(dim=1)
|
602 |
-
|
603 |
-
|
604 |
-
#current feature values
|
605 |
-
feature_values = self.fleet.construct_vector()
|
606 |
-
|
607 |
-
|
608 |
-
#other cars in field
|
609 |
-
num_movers = mover_indices.shape[1]
|
610 |
-
if num_movers == 1:
|
611 |
-
movers_vector = current_node_vector*0
|
612 |
-
elif not self.use_fleet_attention:
|
613 |
-
a = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, self.num_cars)
|
614 |
-
b = torch.arange(self.num_cars).reshape(1, 1, self.num_cars).repeat(self.batch_size, num_movers, 1).to(self.device)
|
615 |
-
c = ((a == b).float().sum(dim=1) > 0).float()
|
616 |
-
movers_mask = c.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, embedding_size)
|
617 |
-
movers_vector = ((current_node_vector*movers_mask).sum(dim=1).unsqueeze(1) - current_node_vector)/(num_movers - 1)
|
618 |
-
else:
|
619 |
-
x = torch.cat([current_node_vector, feature_values], dim=2)
|
620 |
-
movers_vector = self.fleet_attention(x)
|
621 |
-
|
622 |
-
|
623 |
-
L = [current_node_vector, depot_vector, mean_graph_vector, movers_vector, feature_values]
|
624 |
-
pre_output = torch.cat(L, dim=2)
|
625 |
-
|
626 |
-
|
627 |
-
num_movers = mover_indices.shape[1]
|
628 |
-
ind = mover_indices.reshape(self.batch_size, num_movers, 1).repeat(1, 1, pre_output.shape[2])
|
629 |
-
output = torch.gather(pre_output, dim=1, index=ind)
|
630 |
-
|
631 |
-
return output
|
632 |
-
|
633 |
-
|
634 |
-
def get_mover_indices(self, unavailable_moves):
|
635 |
-
depot = self.fleet.depot.reshape(self.batch_size, self.num_cars).long()
|
636 |
-
current_node = self.fleet.node.reshape(self.batch_size, self.num_cars).long()
|
637 |
-
|
638 |
-
# find all cars with "no options"
|
639 |
-
has_option = ((1 - unavailable_moves.float()).sum(dim=2) > 0)
|
640 |
-
|
641 |
-
at_depot = (current_node == depot)
|
642 |
-
in_field = (current_node != depot)
|
643 |
-
active_in_field = in_field & has_option
|
644 |
-
active_at_depot = at_depot & has_option
|
645 |
-
|
646 |
-
deployment_score = self.compute_depoyment_priority_score()
|
647 |
-
max_deployment_score = deployment_score.max()
|
648 |
-
|
649 |
-
A = max_deployment_score * 100
|
650 |
-
B = deployment_score * 10
|
651 |
-
|
652 |
-
score = active_in_field.float() * A + active_at_depot.float() * B
|
653 |
-
score = score.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_depots)
|
654 |
-
|
655 |
-
a = self.fleet.depot.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_depots)
|
656 |
-
b = torch.arange(self.num_depots).reshape(1, 1, self.num_depots).repeat(self.batch_size, self.num_cars, 1).to(self.device)
|
657 |
-
m = (a == b).float()
|
658 |
-
|
659 |
-
score = score*m
|
660 |
-
|
661 |
-
K = self.num_movers_corrected
|
662 |
-
indices = torch.topk(score, k=K, dim=1, largest=True)[1]
|
663 |
-
indices = indices.reshape(self.batch_size, self.num_depots*K)
|
664 |
-
return indices
|
665 |
-
|
666 |
-
|
667 |
-
def check_arival_times(self):
|
668 |
-
#check for arrival times
|
669 |
-
d = self.graph.time_matrix.unsqueeze(1).repeat(1, self.num_cars, 1, 1)
|
670 |
-
ind = self.fleet.node.reshape(self.batch_size, self.num_cars, 1, 1).repeat(1, 1, 1, self.num_nodes)
|
671 |
-
drive_times = torch.gather(d, dim=2, index=ind).squeeze(2)
|
672 |
-
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
673 |
-
arival_times = drive_times + t
|
674 |
-
b = self.graph.end_time.reshape(self.batch_size, 1, self.num_nodes).repeat(1, self.num_cars, 1)
|
675 |
-
attainable = (arival_times <= b)
|
676 |
-
return attainable
|
677 |
-
|
678 |
-
|
679 |
-
def return_to_depot(self):
|
680 |
-
unavailable_moves = 1 - self.check_non_depot_options(use_time=False).float()
|
681 |
-
return_to_depot = (unavailable_moves.reshape(self.batch_size, -1).sum(dim=1) == 0).float()
|
682 |
-
return_to_depot = return_to_depot.reshape(self.batch_size, 1).repeat(1, self.num_cars)
|
683 |
-
|
684 |
-
|
685 |
-
if return_to_depot.sum().item() > 0:
|
686 |
-
|
687 |
-
depot = self.fleet.depot.reshape(self.batch_size, self.num_cars).long()
|
688 |
-
node = self.fleet.node.reshape(self.batch_size, self.num_cars).long()
|
689 |
-
|
690 |
-
#compute next node
|
691 |
-
return_to_depot = return_to_depot.long()
|
692 |
-
next_node = return_to_depot*depot + (1 - return_to_depot)*node
|
693 |
-
|
694 |
-
#update time
|
695 |
-
return_to_depot = return_to_depot.unsqueeze(2).float()
|
696 |
-
|
697 |
-
current_node = self.fleet.node
|
698 |
-
ind_1 = current_node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
699 |
-
drive_times = torch.gather(self.graph.time_matrix, dim=1, index=ind_1)
|
700 |
-
ind_2 = next_node.reshape(self.batch_size, self.num_cars, 1)
|
701 |
-
time_to_next_node = torch.gather(drive_times, dim=2, index=ind_2)
|
702 |
-
self.fleet.time = self.fleet.time + time_to_next_node*return_to_depot
|
703 |
-
|
704 |
-
#update node
|
705 |
-
self.fleet.node = next_node
|
706 |
-
|
707 |
-
#update path
|
708 |
-
n = self.fleet.node.reshape(self.batch_size, self.num_cars, 1)
|
709 |
-
self.fleet.path = torch.cat([self.fleet.path, n], dim=2)
|
710 |
-
|
711 |
-
#update arrival time
|
712 |
-
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1)
|
713 |
-
self.fleet.arrival_times = torch.cat([self.fleet.arrival_times, t], dim=2)
|
714 |
-
|
715 |
-
|
716 |
-
def return_to_depot_1(self):
|
717 |
-
|
718 |
-
depot = self.fleet.depot.reshape(self.batch_size, self.num_cars).long()
|
719 |
-
node = self.fleet.node.reshape(self.batch_size, self.num_cars).long()
|
720 |
-
|
721 |
-
#compute next node
|
722 |
-
next_node = depot
|
723 |
-
|
724 |
-
#update time
|
725 |
-
current_node = self.fleet.node
|
726 |
-
ind_1 = current_node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
727 |
-
drive_times = torch.gather(self.graph.time_matrix, dim=1, index=ind_1)
|
728 |
-
ind_2 = next_node.reshape(self.batch_size, self.num_cars, 1)
|
729 |
-
time_to_next_node = torch.gather(drive_times, dim=2, index=ind_2)
|
730 |
-
self.fleet.time = self.fleet.time + time_to_next_node
|
731 |
-
|
732 |
-
|
733 |
-
#update distance
|
734 |
-
current_node = self.fleet.node
|
735 |
-
ind_1 = current_node.reshape(self.batch_size, self.num_cars, 1).repeat(1, 1, self.num_nodes)
|
736 |
-
drive_distances = torch.gather(self.graph.distance_matrix, dim=1, index=ind_1)
|
737 |
-
ind_2 = next_node.reshape(self.batch_size, self.num_cars, 1)
|
738 |
-
distance_to_next_node = torch.gather(drive_distances, dim=2, index=ind_2)
|
739 |
-
self.fleet.distance = self.fleet.distance + distance_to_next_node
|
740 |
-
|
741 |
-
|
742 |
-
#update node
|
743 |
-
self.fleet.node = next_node
|
744 |
-
|
745 |
-
#update path
|
746 |
-
n = self.fleet.node.reshape(self.batch_size, self.num_cars, 1)
|
747 |
-
self.fleet.path = torch.cat([self.fleet.path, n], dim=2)
|
748 |
-
|
749 |
-
#update arrival time
|
750 |
-
t = self.fleet.time.reshape(self.batch_size, self.num_cars, 1)
|
751 |
-
self.fleet.arrival_times = torch.cat([self.fleet.arrival_times, t], dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|