Create dataloader.py
Browse files- dataloader.py +94 -0
dataloader.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch.utils.data import Dataset
|
4 |
+
from sklearn.decomposition import TruncatedSVD
|
5 |
+
import numpy as np
|
6 |
+
from random import shuffle
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
|
10 |
+
class VRP_Dataset(Dataset):
|
11 |
+
|
12 |
+
def __init__(self, dataset_size, num_nodes, num_depots, dataset_path, device='cpu', *args, **kwargs):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
self.device = device
|
16 |
+
self.dataset_size = dataset_size
|
17 |
+
self.num_nodes = num_nodes
|
18 |
+
self.num_depots = num_depots
|
19 |
+
|
20 |
+
# Load external CSV data from Hugging Face
|
21 |
+
raw_data = pd.read_csv(dataset_path)
|
22 |
+
if len(raw_data) < dataset_size:
|
23 |
+
raise ValueError("Dataset size requested exceeds available data")
|
24 |
+
|
25 |
+
sampled_data = raw_data.sample(n=dataset_size, random_state=42).reset_index(drop=True)
|
26 |
+
|
27 |
+
# Extract coordinates (assuming columns named 'longitude', 'latitude')
|
28 |
+
coords = torch.tensor(sampled_data[['longitude', 'latitude']].values, dtype=torch.float32)
|
29 |
+
|
30 |
+
# Assign node positions
|
31 |
+
node_positions = coords.view(dataset_size, num_nodes, 2)
|
32 |
+
self.node_positions = node_positions
|
33 |
+
|
34 |
+
# Generate fleet data
|
35 |
+
num_cars = num_nodes
|
36 |
+
launch_time = torch.zeros(dataset_size, num_cars, 1)
|
37 |
+
car_start_node = torch.randint(low=0, high=num_depots, size=(dataset_size, num_cars, 1))
|
38 |
+
self.fleet_data = {
|
39 |
+
'start_time': launch_time,
|
40 |
+
'car_start_node': car_start_node
|
41 |
+
}
|
42 |
+
|
43 |
+
# Generate graph data
|
44 |
+
a = torch.arange(num_nodes).reshape(1, 1, -1).repeat(dataset_size, num_cars, 1)
|
45 |
+
b = car_start_node.repeat(1, 1, num_nodes)
|
46 |
+
depot = ((a == b).sum(dim=1) > 0).float().unsqueeze(2)
|
47 |
+
|
48 |
+
start_times = (torch.rand(dataset_size, num_nodes, 1) * 2 + 3) * (1 - depot)
|
49 |
+
end_times = start_times + (0.1 + 0.5 * torch.rand(dataset_size, num_nodes, 1)) * (1 - depot)
|
50 |
+
|
51 |
+
distance_matrix = self.compute_distance_matrix(node_positions)
|
52 |
+
time_matrix = distance_matrix.clone()
|
53 |
+
|
54 |
+
self.graph_data = {
|
55 |
+
'start_times': start_times,
|
56 |
+
'end_times': end_times,
|
57 |
+
'depot': depot,
|
58 |
+
'node_vector': node_positions,
|
59 |
+
'distance_matrix': distance_matrix,
|
60 |
+
'time_matrix': time_matrix
|
61 |
+
}
|
62 |
+
|
63 |
+
def compute_distance_matrix(self, node_positions):
|
64 |
+
x = node_positions.unsqueeze(1).repeat(1, self.num_nodes, 1, 1)
|
65 |
+
y = node_positions.unsqueeze(2).repeat(1, 1, self.num_nodes, 1)
|
66 |
+
distance = (((x - y) ** 2).sum(dim=3)) ** 0.5
|
67 |
+
return distance
|
68 |
+
|
69 |
+
def __getitem__(self, idx):
|
70 |
+
A = {key: self.graph_data[key][idx].unsqueeze(0).to(self.device) for key in self.graph_data}
|
71 |
+
B = {key: self.fleet_data[key][idx].unsqueeze(0).to(self.device) for key in self.fleet_data}
|
72 |
+
return A, B
|
73 |
+
|
74 |
+
def __len__(self):
|
75 |
+
return self.dataset_size
|
76 |
+
|
77 |
+
def collate(self, batch):
|
78 |
+
graph_data = {key: torch.cat([item[0][key] for item in batch], dim=0) for key in self.graph_data}
|
79 |
+
fleet_data = {key: torch.cat([item[1][key] for item in batch], dim=0) for key in self.fleet_data}
|
80 |
+
return graph_data, fleet_data
|
81 |
+
|
82 |
+
def get_batch(self, idx, batch_size=10):
|
83 |
+
return self.collate([self.__getitem__(i) for i in range(idx, idx + batch_size)])
|
84 |
+
|
85 |
+
def get_data(self):
|
86 |
+
return self.graph_data, self.fleet_data
|
87 |
+
|
88 |
+
def model_input_length(self):
|
89 |
+
return 3 + self.graph_data['node_vector'].shape[2]
|
90 |
+
|
91 |
+
def save_data(self, fp):
|
92 |
+
data = (self.graph_data, self.fleet_data)
|
93 |
+
with open(fp, 'wb') as f:
|
94 |
+
torch.save(data, f)
|