Delete baseline.py
Browse files- baseline.py +0 -41
baseline.py
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from torch.nn.utils import clip_grad_norm_
|
4 |
-
from torch.utils.data import DataLoader
|
5 |
-
|
6 |
-
|
7 |
-
def update_baseline(actor, baseline, validation_set, record_scores, batch_size=100, threshold=0.95):
|
8 |
-
|
9 |
-
val_dataloader = DataLoader(dataset=validation_set,
|
10 |
-
batch_size=batch_size,
|
11 |
-
collate_fn=validation_set.collate)
|
12 |
-
|
13 |
-
actor.greedy_search()
|
14 |
-
actor.eval()
|
15 |
-
|
16 |
-
actor_scores = []
|
17 |
-
for batch in val_dataloader:
|
18 |
-
with torch.no_grad():
|
19 |
-
actor_output = actor(batch)
|
20 |
-
actor_cost = actor_output['total_time']
|
21 |
-
actor_cost.reshape(-1)
|
22 |
-
actor_scores.append(actor_cost)
|
23 |
-
actor_scores = torch.cat(actor_scores, dim=0)
|
24 |
-
|
25 |
-
|
26 |
-
if record_scores is None:
|
27 |
-
baseline.load_state_dict(actor.state_dict())
|
28 |
-
record_scores = actor_scores
|
29 |
-
return record_scores
|
30 |
-
else:
|
31 |
-
|
32 |
-
if actor_scores.mean().item() < record_scores.mean().item():
|
33 |
-
print('\n', flush=True)
|
34 |
-
print('baseline updated', flush=True)
|
35 |
-
print('\n', flush=True)
|
36 |
-
|
37 |
-
baseline.load_state_dict(actor.state_dict())
|
38 |
-
record_scores = actor_scores
|
39 |
-
return record_scores
|
40 |
-
else:
|
41 |
-
return record_scores
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|