import torch import torch.nn as nn import torch.nn.functional as F import math import numpy as np class ClassifierOutput(nn.Module): def __init__(self, embedding_size, C=10, softmax_output=False): super().__init__() self.C = C self.embedding_size = embedding_size self.softmax_output = softmax_output self.W_q = nn.Parameter(torch.Tensor(1, embedding_size, embedding_size)) self.init_parameters() def init_parameters(self): for param in self.parameters(): stdv = 1. / math.sqrt(param.size(-1)) param.data.uniform_(-stdv, stdv) def forward(self, context, V_output): batch_size = context.shape[0] Q = torch.bmm(context, self.W_q.repeat(batch_size, 1, 1)) z = torch.bmm(Q, V_output.permute(0, 2, 1)) z = z / (self.embedding_size ** 0.5) z = self.C * torch.tanh(z) return F.softmax(z, dim=1) if self.softmax_output else z class Attention(nn.Module): def __init__(self, n_heads, input_dim, embed_dim=None, val_dim=None, key_dim=None): super().__init__() if val_dim is None: assert embed_dim is not None val_dim = embed_dim // n_heads if key_dim is None: key_dim = val_dim self.n_heads = n_heads self.input_dim = input_dim self.embed_dim = embed_dim self.val_dim = val_dim self.key_dim = key_dim self.norm_factor = 1 / math.sqrt(key_dim) self.W_query = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim)) self.W_out = nn.Parameter(torch.Tensor(n_heads, key_dim, embed_dim)) self.init_parameters() def init_parameters(self): for param in self.parameters(): stdv = 1. / math.sqrt(param.size(-1)) param.data.uniform_(-stdv, stdv) def forward(self, q, K, V, mask=None): batch_size = K.size(1) graph_size = K.size(2) n_query = q.size(1) qflat = q.contiguous().view(-1, self.input_dim) shp_q = (self.n_heads, batch_size, n_query, -1) Q = torch.matmul(qflat, self.W_query).view(shp_q) compatibility = self.norm_factor * torch.matmul(Q, K.transpose(2, 3)) if mask is not None: mask = mask.view(1, batch_size, n_query, graph_size).expand_as(compatibility) compatibility = compatibility.masked_fill(mask, float('-inf')) attn = F.softmax(compatibility, dim=-1) attn = attn.masked_fill(torch.isnan(attn), 0) heads = torch.matmul(attn, V) heads_combined = heads.permute(1, 2, 0, 3).contiguous().view(batch_size, n_query, -1) W_out_combined = self.W_out.permute(1, 0, 2).reshape(self.n_heads * self.key_dim, self.embed_dim) out = torch.matmul(heads_combined, W_out_combined) return out class Decoder(nn.Module): def __init__(self, num_heads, embedding_size, decoder_input_size, softmax_output=False, C=10): super().__init__() self.embedding_size = embedding_size self.initial_embedding = nn.Linear(decoder_input_size - 1, embedding_size) self.attention = Attention(n_heads=num_heads, input_dim=embedding_size, embed_dim=embedding_size) self.classifier_output = ClassifierOutput(embedding_size=embedding_size, C=C, softmax_output=softmax_output) def forward(self, decoder_input, projections, mask, *args, **kwargs): mask = (mask == 0) K = projections['K'] V = projections['V'] V_output = projections['V_output'] embedded_input = self.initial_embedding(decoder_input) context = self.attention(embedded_input, K, V, mask) output = self.classifier_output(context, V_output) return output