Spaces:
Sleeping
Sleeping
Upload run_predictions.py
Browse files- run_predictions.py +152 -0
run_predictions.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pandas as pd
|
3 |
+
import argparse
|
4 |
+
import re
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
8 |
+
from sklearn.metrics import classification_report, confusion_matrix
|
9 |
+
|
10 |
+
# Define model names
|
11 |
+
bert_model_name = "bert-base-uncased"
|
12 |
+
hatebert_model_name = "GroNLP/hateBERT"
|
13 |
+
|
14 |
+
class CyberbullyingDetector:
|
15 |
+
def __init__(self, model_type="bert"):
|
16 |
+
if model_type == "bert":
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
|
18 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(bert_model_name)
|
19 |
+
elif model_type == "hatebert":
|
20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(hatebert_model_name)
|
21 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(hatebert_model_name)
|
22 |
+
else:
|
23 |
+
raise ValueError("Invalid model_type. Choose 'bert' or 'hatebert'.")
|
24 |
+
|
25 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
self.model.to(self.device)
|
27 |
+
|
28 |
+
self.cyberbullying_threshold = 0.7 # Confidence threshold
|
29 |
+
|
30 |
+
self.trigger_words = [
|
31 |
+
'buang', 'pokpok', 'bogo', 'linte', 'tanga', 'diputa', 'yuta mo', 'gaga',
|
32 |
+
'lagtok ka', 'addict', 'bogok', 'gago', 'law-ay', 'demonyo ka', 'animal ka', 'animal',
|
33 |
+
'bilatibay', 'yudipota', 'pangit', 'tikalon', 'tinikal', 'hambog',
|
34 |
+
'batinggilan', 'biga-on', 'bulay-ug', 'agi', 'agitot', 'alpot', 'hangag'
|
35 |
+
]
|
36 |
+
|
37 |
+
def find_triggers(self, text):
|
38 |
+
text_lower = text.lower()
|
39 |
+
return [word for word in self.trigger_words if word in text_lower]
|
40 |
+
|
41 |
+
def predict(self, text):
|
42 |
+
triggers = self.find_triggers(text)
|
43 |
+
|
44 |
+
inputs = self.tokenizer(
|
45 |
+
text,
|
46 |
+
return_tensors="pt",
|
47 |
+
truncation=True,
|
48 |
+
max_length=128,
|
49 |
+
padding=True
|
50 |
+
).to(self.device)
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
outputs = self.model(**inputs)
|
54 |
+
|
55 |
+
logits = outputs.logits
|
56 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
57 |
+
pred_class = torch.argmax(probs).item()
|
58 |
+
confidence = probs[0][pred_class].item()
|
59 |
+
|
60 |
+
if (pred_class == 1 and confidence >= self.cyberbullying_threshold) or (len(triggers) > 0):
|
61 |
+
label = "Cyberbullying"
|
62 |
+
is_cyberbullying = True
|
63 |
+
else:
|
64 |
+
label = "Safe"
|
65 |
+
is_cyberbullying = False
|
66 |
+
|
67 |
+
return {
|
68 |
+
"text": text,
|
69 |
+
"label": label,
|
70 |
+
"confidence": confidence,
|
71 |
+
"language": "hil",
|
72 |
+
"triggers": triggers,
|
73 |
+
"is_cyberbullying": is_cyberbullying
|
74 |
+
}
|
75 |
+
|
76 |
+
def save_confusion_matrix(y_true, y_pred, filename="confusion_matrix.png"):
|
77 |
+
labels = sorted(set(y_true + y_pred))
|
78 |
+
cm = confusion_matrix(y_true, y_pred, labels=labels)
|
79 |
+
plt.figure(figsize=(6, 4))
|
80 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=labels, yticklabels=labels)
|
81 |
+
plt.title("Confusion Matrix")
|
82 |
+
plt.xlabel("Predicted")
|
83 |
+
plt.ylabel("True")
|
84 |
+
plt.tight_layout()
|
85 |
+
plt.savefig(filename)
|
86 |
+
plt.close()
|
87 |
+
print(f"📸 Confusion matrix saved as {filename}")
|
88 |
+
|
89 |
+
def run_predictions(input_csv=None, output_csv=None, model_type="bert"):
|
90 |
+
detector = CyberbullyingDetector(model_type=model_type)
|
91 |
+
|
92 |
+
if input_csv:
|
93 |
+
df = pd.read_csv(input_csv)
|
94 |
+
results = [detector.predict(text) for text in df['tweet_text']]
|
95 |
+
|
96 |
+
output_df = df.copy()
|
97 |
+
output_df['predicted_label'] = [r['label'] for r in results]
|
98 |
+
output_df['confidence'] = [r['confidence'] for r in results]
|
99 |
+
output_df['language'] = [r['language'] for r in results]
|
100 |
+
output_df['triggers'] = [', '.join(r['triggers']) for r in results]
|
101 |
+
output_df['is_cyberbullying'] = [r['is_cyberbullying'] for r in results]
|
102 |
+
|
103 |
+
output_df['true_label'] = output_df['cyberbullying_type'].apply(
|
104 |
+
lambda x: "Cyberbullying" if pd.notnull(x) and str(x).strip().lower() != "none" else "Safe"
|
105 |
+
)
|
106 |
+
|
107 |
+
if output_csv:
|
108 |
+
output_df.to_csv(output_csv, index=False)
|
109 |
+
print(f"\n✅ Predictions saved to {output_csv}")
|
110 |
+
|
111 |
+
print("\n📌 Sample Predictions:")
|
112 |
+
print(output_df[['tweet_text', 'predicted_label', 'confidence', 'triggers']].head(10).to_string(index=False))
|
113 |
+
|
114 |
+
print("\n📊 Prediction Summary:")
|
115 |
+
print(output_df['predicted_label'].value_counts())
|
116 |
+
|
117 |
+
print("\n✅ Ground Truth Summary:")
|
118 |
+
print(output_df['true_label'].value_counts())
|
119 |
+
|
120 |
+
accuracy = (output_df['predicted_label'] == output_df['true_label']).mean()
|
121 |
+
print(f"\n🎯 Accuracy: {accuracy:.2%}")
|
122 |
+
|
123 |
+
print("\n🧾 Classification Report:")
|
124 |
+
print(classification_report(output_df['true_label'], output_df['predicted_label'], digits=2, zero_division=0))
|
125 |
+
|
126 |
+
save_confusion_matrix(output_df['true_label'].tolist(), output_df['predicted_label'].tolist())
|
127 |
+
|
128 |
+
return output_df
|
129 |
+
else:
|
130 |
+
# Inference mode
|
131 |
+
print("\n🔍 Type a sentence to analyze (or 'exit' to quit):")
|
132 |
+
while True:
|
133 |
+
text = input(">>> ")
|
134 |
+
if text.lower() in ["exit", "quit"]:
|
135 |
+
break
|
136 |
+
result = detector.predict(text)
|
137 |
+
print(result)
|
138 |
+
|
139 |
+
if __name__ == '__main__':
|
140 |
+
parser = argparse.ArgumentParser(description="Cyberbullying Detector")
|
141 |
+
parser.add_argument('--input_file', type=str, help="Path to input CSV with 'tweet_text' column")
|
142 |
+
parser.add_argument('--output_file', type=str, help="Path to save results CSV")
|
143 |
+
parser.add_argument('--model', type=str, default='bert', choices=['bert', 'hatebert'], help="Model to use")
|
144 |
+
|
145 |
+
args = parser.parse_args()
|
146 |
+
|
147 |
+
if args.input_file:
|
148 |
+
print(f"📥 Running batch predictions from {args.input_file} using {args.model.upper()}...")
|
149 |
+
else:
|
150 |
+
print(f"🧪 No input file. Running in interactive mode using {args.model.upper()}...")
|
151 |
+
|
152 |
+
run_predictions(args.input_file, args.output_file, model_type=args.model)
|