Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,94 @@
|
|
1 |
-
from flask import Flask, request, jsonify, render_template
|
2 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
-
import torch
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import re
|
6 |
-
from flask_cors import CORS # Enable CORS
|
7 |
-
|
8 |
-
# Initialize Flask app
|
9 |
-
app = Flask(__name__)
|
10 |
-
CORS(app) # Allow requests from frontend apps
|
11 |
-
|
12 |
-
# Choose your model: 'bert-base-uncased' or 'GroNLP/hateBERT'
|
13 |
-
MODEL_NAME = 'bert-base-uncased' # Change to 'GroNLP/hateBERT' if needed
|
14 |
-
|
15 |
-
# Load tokenizer and model
|
16 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
-
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
18 |
-
model.eval()
|
19 |
-
|
20 |
-
# Two-class labels only
|
21 |
-
LABELS = ['Safe', 'Cyberbullying']
|
22 |
-
|
23 |
-
# Offensive trigger words
|
24 |
-
TRIGGER_WORDS = [
|
25 |
-
"gago", "pokpok", "yawa", "linte", "ulol", "tangina", "bilat", "putang", "tarantado", "bobo",
|
26 |
-
"yudipota", "law-ay", "bilatibay", "hayop"
|
27 |
-
]
|
28 |
-
|
29 |
-
# Detect trigger words in input text
|
30 |
-
def find_triggers(text):
|
31 |
-
found = []
|
32 |
-
for word in TRIGGER_WORDS:
|
33 |
-
if re.search(rf"\b{re.escape(word)}\b", text, re.IGNORECASE):
|
34 |
-
found.append(word)
|
35 |
-
return found
|
36 |
-
|
37 |
-
# Predict function
|
38 |
-
def predict_text(text):
|
39 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
40 |
-
|
41 |
-
# Use GPU if available
|
42 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
-
model.to(device)
|
44 |
-
inputs = {key: value.to(device) for key, value in inputs.items()}
|
45 |
-
|
46 |
-
with torch.no_grad():
|
47 |
-
outputs = model(**inputs)
|
48 |
-
logits = outputs.logits
|
49 |
-
probs = F.softmax(logits, dim=1)
|
50 |
-
confidence, predicted_class = torch.max(probs, dim=1)
|
51 |
-
|
52 |
-
# Fallback logic: if model predicts more than 2 classes, default to Safe if out-of-bounds
|
53 |
-
label_index = predicted_class.item()
|
54 |
-
if label_index >= len(LABELS):
|
55 |
-
label_index = 0 # default to "Safe"
|
56 |
-
|
57 |
-
label = LABELS[label_index]
|
58 |
-
confidence_score = round(confidence.item(), 4)
|
59 |
-
triggers = find_triggers(text)
|
60 |
-
|
61 |
-
# Override model prediction if offensive triggers found
|
62 |
-
if triggers and label == "Safe":
|
63 |
-
label = "Cyberbullying"
|
64 |
-
|
65 |
-
return {
|
66 |
-
"label": label,
|
67 |
-
"confidence": confidence_score,
|
68 |
-
"triggers": triggers
|
69 |
-
}
|
70 |
-
|
71 |
-
# Serve frontend
|
72 |
-
@app.route('/')
|
73 |
-
def index():
|
74 |
-
return render_template('index.html') # Ensure templates/index.html exists
|
75 |
-
|
76 |
-
# API endpoint
|
77 |
-
@app.route("/predict", methods=["POST"])
|
78 |
-
def predict_api():
|
79 |
-
try:
|
80 |
-
data = request.get_json()
|
81 |
-
text = data.get("text", "")
|
82 |
-
|
83 |
-
if not text.strip():
|
84 |
-
return jsonify({"error": "No text provided"}), 400
|
85 |
-
|
86 |
-
result = predict_text(text)
|
87 |
-
return jsonify(result)
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
return jsonify({"error": str(e)}), 500
|
91 |
-
|
92 |
-
# Run server
|
93 |
-
if __name__ == "__main__":
|
94 |
-
app.run(debug=True)
|
|
|
1 |
+
from flask import Flask, request, jsonify, render_template
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import re
|
6 |
+
from flask_cors import CORS # Enable CORS
|
7 |
+
|
8 |
+
# Initialize Flask app
|
9 |
+
app = Flask(__name__)
|
10 |
+
CORS(app) # Allow requests from frontend apps
|
11 |
+
|
12 |
+
# Choose your model: 'bert-base-uncased' or 'GroNLP/hateBERT'
|
13 |
+
MODEL_NAME = 'bert-base-uncased' # Change to 'GroNLP/hateBERT' if needed
|
14 |
+
|
15 |
+
# Load tokenizer and model
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
18 |
+
model.eval()
|
19 |
+
|
20 |
+
# Two-class labels only
|
21 |
+
LABELS = ['Safe', 'Cyberbullying']
|
22 |
+
|
23 |
+
# Offensive trigger words
|
24 |
+
TRIGGER_WORDS = [
|
25 |
+
"gago", "pokpok", "yawa", "linte", "ulol", "tangina", "bilat", "putang", "tarantado", "bobo",
|
26 |
+
"yudipota", "law-ay", "bilatibay", "hayop"
|
27 |
+
]
|
28 |
+
|
29 |
+
# Detect trigger words in input text
|
30 |
+
def find_triggers(text):
|
31 |
+
found = []
|
32 |
+
for word in TRIGGER_WORDS:
|
33 |
+
if re.search(rf"\b{re.escape(word)}\b", text, re.IGNORECASE):
|
34 |
+
found.append(word)
|
35 |
+
return found
|
36 |
+
|
37 |
+
# Predict function
|
38 |
+
def predict_text(text):
|
39 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
40 |
+
|
41 |
+
# Use GPU if available
|
42 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
43 |
+
model.to(device)
|
44 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
outputs = model(**inputs)
|
48 |
+
logits = outputs.logits
|
49 |
+
probs = F.softmax(logits, dim=1)
|
50 |
+
confidence, predicted_class = torch.max(probs, dim=1)
|
51 |
+
|
52 |
+
# Fallback logic: if model predicts more than 2 classes, default to Safe if out-of-bounds
|
53 |
+
label_index = predicted_class.item()
|
54 |
+
if label_index >= len(LABELS):
|
55 |
+
label_index = 0 # default to "Safe"
|
56 |
+
|
57 |
+
label = LABELS[label_index]
|
58 |
+
confidence_score = round(confidence.item(), 4)
|
59 |
+
triggers = find_triggers(text)
|
60 |
+
|
61 |
+
# Override model prediction if offensive triggers found
|
62 |
+
if triggers and label == "Safe":
|
63 |
+
label = "Cyberbullying"
|
64 |
+
|
65 |
+
return {
|
66 |
+
"label": label,
|
67 |
+
"confidence": confidence_score,
|
68 |
+
"triggers": triggers
|
69 |
+
}
|
70 |
+
|
71 |
+
# Serve frontend
|
72 |
+
@app.route('/')
|
73 |
+
def index():
|
74 |
+
return render_template('index.html') # Ensure templates/index.html exists
|
75 |
+
|
76 |
+
# API endpoint
|
77 |
+
@app.route("/predict", methods=["POST"])
|
78 |
+
def predict_api():
|
79 |
+
try:
|
80 |
+
data = request.get_json()
|
81 |
+
text = data.get("text", "")
|
82 |
+
|
83 |
+
if not text.strip():
|
84 |
+
return jsonify({"error": "No text provided"}), 400
|
85 |
+
|
86 |
+
result = predict_text(text)
|
87 |
+
return jsonify(result)
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return jsonify({"error": str(e)}), 500
|
91 |
+
|
92 |
+
# Run server
|
93 |
+
#if __name__ == "__main__":
|
94 |
+
# app.run(debug=True)
|