Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- templates/app.py +107 -0
- templates/index.html +200 -0
templates/app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import re
|
| 4 |
+
from flask import Flask, render_template, request, jsonify
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 6 |
+
from sklearn.metrics import classification_report
|
| 7 |
+
import io
|
| 8 |
+
import sys
|
| 9 |
+
|
| 10 |
+
# Define model names
|
| 11 |
+
bert_model_name = "bert-base-uncased"
|
| 12 |
+
hatebert_model_name = "GroNLP/hateBERT"
|
| 13 |
+
|
| 14 |
+
# Initialize Flask app
|
| 15 |
+
app = Flask(__name__)
|
| 16 |
+
|
| 17 |
+
class CyberbullyingDetector:
|
| 18 |
+
def __init__(self, model_type="bert"):
|
| 19 |
+
if model_type == "bert":
|
| 20 |
+
self.tokenizer = AutoTokenizer.from_pretrained(bert_model_name)
|
| 21 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(bert_model_name)
|
| 22 |
+
elif model_type == "hatebert":
|
| 23 |
+
self.tokenizer = AutoTokenizer.from_pretrained(hatebert_model_name)
|
| 24 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(hatebert_model_name)
|
| 25 |
+
else:
|
| 26 |
+
raise ValueError("Invalid model_type. Choose 'bert' or 'hatebert'.")
|
| 27 |
+
|
| 28 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 29 |
+
self.model.to(self.device)
|
| 30 |
+
|
| 31 |
+
self.cyberbullying_threshold = 0.7
|
| 32 |
+
self.borderline_threshold = 0.4
|
| 33 |
+
self.trigger_words = [
|
| 34 |
+
'buang', 'pokpok', 'bogo', 'linte', 'tanga', 'diputa', 'salamat', 'Padayon lang', 'mayo gid', 'Nagapasalamat',
|
| 35 |
+
'gago', 'law-ay', 'bilatibay', 'yudipota', 'pangit', 'tikalon', 'tinikal', 'hambog',
|
| 36 |
+
'batinggilan', 'biga-on', 'bulay-ug', 'agi', 'agitot', 'alpot', 'hangag'
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
def find_triggers(self, text):
|
| 40 |
+
text_lower = text.lower()
|
| 41 |
+
return [word for word in self.trigger_words if word in text_lower]
|
| 42 |
+
|
| 43 |
+
def predict(self, text):
|
| 44 |
+
triggers = self.find_triggers(text)
|
| 45 |
+
|
| 46 |
+
inputs = self.tokenizer(
|
| 47 |
+
text,
|
| 48 |
+
return_tensors="pt",
|
| 49 |
+
truncation=True,
|
| 50 |
+
max_length=128,
|
| 51 |
+
padding=True
|
| 52 |
+
).to(self.device)
|
| 53 |
+
|
| 54 |
+
with torch.no_grad():
|
| 55 |
+
outputs = self.model(**inputs)
|
| 56 |
+
|
| 57 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)
|
| 58 |
+
pred_class = torch.argmax(probs).item()
|
| 59 |
+
confidence = probs[0][pred_class].item()
|
| 60 |
+
|
| 61 |
+
if confidence >= self.cyberbullying_threshold or (pred_class == 1) or (len(triggers) > 0):
|
| 62 |
+
label = "Cyberbullying"
|
| 63 |
+
is_cyberbullying = True
|
| 64 |
+
elif confidence >= self.borderline_threshold:
|
| 65 |
+
label = "Borderline"
|
| 66 |
+
is_cyberbullying = False
|
| 67 |
+
else:
|
| 68 |
+
label = "Safe"
|
| 69 |
+
is_cyberbullying = False
|
| 70 |
+
|
| 71 |
+
return {
|
| 72 |
+
"text": text,
|
| 73 |
+
"label": label,
|
| 74 |
+
"confidence": confidence,
|
| 75 |
+
"language": "hil",
|
| 76 |
+
"triggers": triggers,
|
| 77 |
+
"is_cyberbullying": is_cyberbullying
|
| 78 |
+
}
|
| 79 |
+
|
| 80 |
+
# Initialize the detector
|
| 81 |
+
detector = CyberbullyingDetector(model_type="bert")
|
| 82 |
+
|
| 83 |
+
@app.route('/')
|
| 84 |
+
def index():
|
| 85 |
+
return render_template('index.html', classification_report="Loading...")
|
| 86 |
+
|
| 87 |
+
@app.route('/predict', methods=['POST'])
|
| 88 |
+
def predict():
|
| 89 |
+
data = request.get_json()
|
| 90 |
+
text = data.get('text', '')
|
| 91 |
+
|
| 92 |
+
if not text:
|
| 93 |
+
return jsonify({"error": "No text provided"}), 400
|
| 94 |
+
|
| 95 |
+
# Make prediction using the model
|
| 96 |
+
result = detector.predict(text)
|
| 97 |
+
|
| 98 |
+
# Generate the classification report
|
| 99 |
+
true_labels = ["Cyberbullying" if "cyberbullying" in text else "Safe" for text in [text]]
|
| 100 |
+
predicted_labels = [result['label']]
|
| 101 |
+
report = classification_report(true_labels, predicted_labels, zero_division=0)
|
| 102 |
+
|
| 103 |
+
# Render the template with the classification report
|
| 104 |
+
return render_template('index.html', classification_report=report)
|
| 105 |
+
|
| 106 |
+
if __name__ == '__main__':
|
| 107 |
+
app.run(debug=True)
|
templates/index.html
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8" />
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
| 6 |
+
<title>Cyberbullying Detection</title>
|
| 7 |
+
<style>
|
| 8 |
+
* {
|
| 9 |
+
box-sizing: border-box;
|
| 10 |
+
}
|
| 11 |
+
|
| 12 |
+
body {
|
| 13 |
+
margin: 0;
|
| 14 |
+
font-family: Arial, sans-serif;
|
| 15 |
+
background-color: black;
|
| 16 |
+
color: white;
|
| 17 |
+
display: flex;
|
| 18 |
+
flex-direction: column;
|
| 19 |
+
min-height: 100vh;
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
header {
|
| 23 |
+
background-color: #000;
|
| 24 |
+
color: red;
|
| 25 |
+
padding: 15px 20px;
|
| 26 |
+
font-size: 24px;
|
| 27 |
+
text-align: center;
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
main {
|
| 31 |
+
flex: 1;
|
| 32 |
+
display: flex;
|
| 33 |
+
justify-content: center;
|
| 34 |
+
align-items: center;
|
| 35 |
+
padding: 20px;
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
.container {
|
| 39 |
+
width: 100%;
|
| 40 |
+
max-width: 700px;
|
| 41 |
+
background-color: #1e1e1e;
|
| 42 |
+
padding: 30px;
|
| 43 |
+
border-radius: 8px;
|
| 44 |
+
box-shadow: 0 4px 8px rgba(255, 255, 255, 0.1);
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
h1 {
|
| 48 |
+
text-align: center;
|
| 49 |
+
margin-top: 0;
|
| 50 |
+
color: #fff;
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
textarea {
|
| 54 |
+
width: 100%;
|
| 55 |
+
height: 150px;
|
| 56 |
+
padding: 10px;
|
| 57 |
+
margin: 10px 0;
|
| 58 |
+
border-radius: 5px;
|
| 59 |
+
border: 1px solid #ccc;
|
| 60 |
+
font-family: Arial, sans-serif;
|
| 61 |
+
resize: vertical;
|
| 62 |
+
}
|
| 63 |
+
|
| 64 |
+
.button-group {
|
| 65 |
+
display: flex;
|
| 66 |
+
justify-content: space-between;
|
| 67 |
+
gap: 10px;
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
button {
|
| 71 |
+
padding: 10px 20px;
|
| 72 |
+
font-size: 16px;
|
| 73 |
+
background-color: #4CAF50;
|
| 74 |
+
color: white;
|
| 75 |
+
border: none;
|
| 76 |
+
border-radius: 5px;
|
| 77 |
+
cursor: pointer;
|
| 78 |
+
width: 48%;
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
#clearBtn {
|
| 82 |
+
background-color: #f44336;
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
button:hover {
|
| 86 |
+
opacity: 0.9;
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
#result {
|
| 90 |
+
margin-top: 20px;
|
| 91 |
+
display: none;
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
#error {
|
| 95 |
+
color: #f44336;
|
| 96 |
+
margin-top: 10px;
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
footer {
|
| 100 |
+
background-color: #000;
|
| 101 |
+
color: red;
|
| 102 |
+
text-align: center;
|
| 103 |
+
padding: 10px 0;
|
| 104 |
+
}
|
| 105 |
+
</style>
|
| 106 |
+
</head>
|
| 107 |
+
<body>
|
| 108 |
+
|
| 109 |
+
<header>
|
| 110 |
+
Paculan & Coloso
|
| 111 |
+
</header>
|
| 112 |
+
|
| 113 |
+
<main>
|
| 114 |
+
<div class="container">
|
| 115 |
+
<h1>Cyberbullying Detection</h1>
|
| 116 |
+
<form id="predictionForm" method="post">
|
| 117 |
+
<textarea id="inputText" placeholder="Enter text here..."></textarea>
|
| 118 |
+
<div class="button-group">
|
| 119 |
+
<button type="submit">Get Prediction</button>
|
| 120 |
+
<button type="button" id="clearBtn">Clear</button>
|
| 121 |
+
</div>
|
| 122 |
+
</form>
|
| 123 |
+
|
| 124 |
+
<!-- Error message section -->
|
| 125 |
+
<div id="error"></div>
|
| 126 |
+
|
| 127 |
+
<!-- Prediction result section -->
|
| 128 |
+
<div id="result">
|
| 129 |
+
<h3>Prediction Result:</h3>
|
| 130 |
+
<p id="prediction"></p>
|
| 131 |
+
<p id="confidence"></p>
|
| 132 |
+
<p id="triggers"></p>
|
| 133 |
+
</div>
|
| 134 |
+
</div>
|
| 135 |
+
</main>
|
| 136 |
+
|
| 137 |
+
<footer>
|
| 138 |
+
© 2025 Paculan & Coloso Research Worx.
|
| 139 |
+
</footer>
|
| 140 |
+
|
| 141 |
+
<script>
|
| 142 |
+
const form = document.getElementById('predictionForm');
|
| 143 |
+
const inputText = document.getElementById('inputText');
|
| 144 |
+
const predictionEl = document.getElementById('prediction');
|
| 145 |
+
const confidenceEl = document.getElementById('confidence');
|
| 146 |
+
const triggersEl = document.getElementById('triggers');
|
| 147 |
+
const resultBox = document.getElementById('result');
|
| 148 |
+
const errorBox = document.getElementById('error');
|
| 149 |
+
|
| 150 |
+
// Handle form submission
|
| 151 |
+
form.addEventListener('submit', function(e) {
|
| 152 |
+
e.preventDefault();
|
| 153 |
+
const text = inputText.value.trim();
|
| 154 |
+
|
| 155 |
+
if (!text) {
|
| 156 |
+
errorBox.textContent = "Please enter text before submitting.";
|
| 157 |
+
resultBox.style.display = "none";
|
| 158 |
+
return;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
// Clear previous error messages
|
| 162 |
+
errorBox.textContent = "";
|
| 163 |
+
|
| 164 |
+
// Fetch prediction from Flask backend
|
| 165 |
+
fetch('http://127.0.0.1:5000/predict', {
|
| 166 |
+
method: 'POST',
|
| 167 |
+
headers: { 'Content-Type': 'application/json' },
|
| 168 |
+
body: JSON.stringify({ text: text })
|
| 169 |
+
})
|
| 170 |
+
.then(response => {
|
| 171 |
+
if (!response.ok) throw new Error("Server error");
|
| 172 |
+
return response.json();
|
| 173 |
+
})
|
| 174 |
+
.then(data => {
|
| 175 |
+
// Update the result section
|
| 176 |
+
predictionEl.textContent = "Label: " + data.label;
|
| 177 |
+
confidenceEl.textContent = "Confidence: " + data.confidence;
|
| 178 |
+
triggersEl.textContent = "Detected Triggers: " + (data.triggers.length ? data.triggers.join(', ') : "None");
|
| 179 |
+
resultBox.style.display = "block";
|
| 180 |
+
})
|
| 181 |
+
.catch(error => {
|
| 182 |
+
errorBox.textContent = "Something went wrong. Please try again.";
|
| 183 |
+
console.error(error);
|
| 184 |
+
resultBox.style.display = "none";
|
| 185 |
+
});
|
| 186 |
+
});
|
| 187 |
+
|
| 188 |
+
// Handle clearing the form
|
| 189 |
+
document.getElementById('clearBtn').addEventListener('click', function () {
|
| 190 |
+
inputText.value = '';
|
| 191 |
+
predictionEl.textContent = '';
|
| 192 |
+
confidenceEl.textContent = '';
|
| 193 |
+
triggersEl.textContent = '';
|
| 194 |
+
resultBox.style.display = 'none';
|
| 195 |
+
errorBox.textContent = '';
|
| 196 |
+
});
|
| 197 |
+
</script>
|
| 198 |
+
|
| 199 |
+
</body>
|
| 200 |
+
</html>
|