Spaces:
Sleeping
Sleeping
Update knowledge_engine.py
Browse files- knowledge_engine.py +24 -18
knowledge_engine.py
CHANGED
@@ -6,26 +6,40 @@ from concurrent.futures import ThreadPoolExecutor
|
|
6 |
|
7 |
from config import Config
|
8 |
|
|
|
|
|
|
|
9 |
# Core ML/AI libraries
|
10 |
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
from langchain_community.vectorstores import FAISS
|
13 |
-
from langchain_community.embeddings import OllamaEmbeddings
|
14 |
from langchain.chains import RetrievalQA
|
15 |
from langchain.prompts import PromptTemplate
|
16 |
-
from
|
17 |
-
from langchain_community.retrievers import BM25Retriever
|
18 |
|
|
|
|
|
|
|
19 |
|
20 |
-
class KnowledgeManager:
|
21 |
-
"""Main knowledge management class handling document processing and Q&A with CoT & MoE routing"""
|
22 |
|
|
|
23 |
def __init__(self):
|
24 |
Config.setup_dirs()
|
25 |
-
self.embeddings =
|
26 |
self.vector_db, self.bm25_retriever = self._init_retrievers()
|
27 |
self.qa_chain = self._create_moe_qa_chain()
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def _init_retrievers(self):
|
30 |
faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
|
31 |
faiss_pkl_path = Config.VECTOR_STORE_PATH / "index.pkl"
|
@@ -42,7 +56,7 @@ class KnowledgeManager:
|
|
42 |
bm25_retriever = pickle.load(f)
|
43 |
return vector_db, bm25_retriever
|
44 |
except Exception as e:
|
45 |
-
print(f"[!] Error loading
|
46 |
|
47 |
return self._build_retrievers_from_documents()
|
48 |
|
@@ -77,18 +91,15 @@ class KnowledgeManager:
|
|
77 |
return vector_db, bm25_retriever
|
78 |
|
79 |
def _create_default_knowledge(self):
|
80 |
-
default_text = """Sirraya xBrain - Advanced AI Platform\n\nCreated by Amir Hameed.\n\nFeatures:\n- Hybrid Retrieval (Vector + BM25)\n- LISA Assistant\n- FAISS,
|
81 |
with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
|
82 |
f.write(default_text)
|
83 |
|
84 |
def _parallel_retrieve(self, question: str):
|
85 |
-
"""Parallel retrieval execution: simulates Mixture of Experts routing"""
|
86 |
-
|
87 |
def retrieve_with_bm25():
|
88 |
return self.bm25_retriever.get_relevant_documents(question)
|
89 |
|
90 |
def retrieve_with_vector():
|
91 |
-
# Lowered threshold to 0.3 for better doc retrieval (adjust as needed)
|
92 |
retriever = self.vector_db.as_retriever(
|
93 |
search_type="similarity_score_threshold",
|
94 |
search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS, "score_threshold": 0.83}
|
@@ -101,7 +112,6 @@ class KnowledgeManager:
|
|
101 |
bm25_results = bm25_future.result()
|
102 |
vector_results = vector_future.result()
|
103 |
|
104 |
-
# Combine results; duplicates are possible, consider deduplication if needed
|
105 |
return vector_results + bm25_results
|
106 |
|
107 |
def _create_moe_qa_chain(self):
|
@@ -123,9 +133,9 @@ Instructions:
|
|
123 |
Answer:"""
|
124 |
|
125 |
return RetrievalQA.from_chain_type(
|
126 |
-
llm=
|
127 |
chain_type="stuff",
|
128 |
-
retriever=self.vector_db.as_retriever(search_kwargs={"k": 1}),
|
129 |
chain_type_kwargs={
|
130 |
"prompt": PromptTemplate(
|
131 |
template=prompt_template,
|
@@ -136,7 +146,6 @@ Answer:"""
|
|
136 |
)
|
137 |
|
138 |
def query(self, question: str) -> Dict[str, Any]:
|
139 |
-
"""Query system using CoT + MoE logic"""
|
140 |
if not self.qa_chain:
|
141 |
return {
|
142 |
"answer": "Knowledge system not initialized. Please reload.",
|
@@ -148,14 +157,11 @@ Answer:"""
|
|
148 |
start_time = datetime.now()
|
149 |
docs = self._parallel_retrieve(question)
|
150 |
|
151 |
-
# If no docs found, fallback to retriever without threshold for testing
|
152 |
if not docs:
|
153 |
retriever = self.vector_db.as_retriever(search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS})
|
154 |
docs = retriever.get_relevant_documents(question)
|
155 |
|
156 |
-
# Use invoke() for chains with multiple outputs
|
157 |
result = self.qa_chain.invoke({"input_documents": docs, "query": question})
|
158 |
-
|
159 |
processing_time = (datetime.now() - start_time).total_seconds() * 1000
|
160 |
|
161 |
return {
|
|
|
6 |
|
7 |
from config import Config
|
8 |
|
9 |
+
# Setup Hugging Face token securely (Make sure to set this in your environment securely)
|
10 |
+
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = "your_token_here"
|
11 |
+
|
12 |
# Core ML/AI libraries
|
13 |
from langchain_community.document_loaders import TextLoader, DirectoryLoader
|
14 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
15 |
from langchain_community.vectorstores import FAISS
|
|
|
16 |
from langchain.chains import RetrievalQA
|
17 |
from langchain.prompts import PromptTemplate
|
18 |
+
from langchain.retrievers import BM25Retriever
|
|
|
19 |
|
20 |
+
# Only use Hugging Face embeddings and LLM (no Ollama fallback)
|
21 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
22 |
+
from langchain_community.llms import HuggingFaceHub
|
23 |
|
|
|
|
|
24 |
|
25 |
+
class KnowledgeManager:
|
26 |
def __init__(self):
|
27 |
Config.setup_dirs()
|
28 |
+
self.embeddings = self._init_embeddings()
|
29 |
self.vector_db, self.bm25_retriever = self._init_retrievers()
|
30 |
self.qa_chain = self._create_moe_qa_chain()
|
31 |
|
32 |
+
def _init_embeddings(self):
|
33 |
+
print("[i] Using Hugging Face embeddings")
|
34 |
+
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
35 |
+
|
36 |
+
def _init_llm(self):
|
37 |
+
print("[i] Using Hugging Face LLM")
|
38 |
+
return HuggingFaceHub(
|
39 |
+
repo_id="tiiuae/falcon-7b-instruct",
|
40 |
+
model_kwargs={"temperature": 0.1, "max_new_tokens": 512}
|
41 |
+
)
|
42 |
+
|
43 |
def _init_retrievers(self):
|
44 |
faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
|
45 |
faiss_pkl_path = Config.VECTOR_STORE_PATH / "index.pkl"
|
|
|
56 |
bm25_retriever = pickle.load(f)
|
57 |
return vector_db, bm25_retriever
|
58 |
except Exception as e:
|
59 |
+
print(f"[!] Error loading vector store: {e}. Rebuilding...")
|
60 |
|
61 |
return self._build_retrievers_from_documents()
|
62 |
|
|
|
91 |
return vector_db, bm25_retriever
|
92 |
|
93 |
def _create_default_knowledge(self):
|
94 |
+
default_text = """Sirraya xBrain - Advanced AI Platform\n\nCreated by Amir Hameed.\n\nFeatures:\n- Hybrid Retrieval (Vector + BM25)\n- LISA Assistant\n- FAISS, BM25 Integration"""
|
95 |
with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
|
96 |
f.write(default_text)
|
97 |
|
98 |
def _parallel_retrieve(self, question: str):
|
|
|
|
|
99 |
def retrieve_with_bm25():
|
100 |
return self.bm25_retriever.get_relevant_documents(question)
|
101 |
|
102 |
def retrieve_with_vector():
|
|
|
103 |
retriever = self.vector_db.as_retriever(
|
104 |
search_type="similarity_score_threshold",
|
105 |
search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS, "score_threshold": 0.83}
|
|
|
112 |
bm25_results = bm25_future.result()
|
113 |
vector_results = vector_future.result()
|
114 |
|
|
|
115 |
return vector_results + bm25_results
|
116 |
|
117 |
def _create_moe_qa_chain(self):
|
|
|
133 |
Answer:"""
|
134 |
|
135 |
return RetrievalQA.from_chain_type(
|
136 |
+
llm=self._init_llm(),
|
137 |
chain_type="stuff",
|
138 |
+
retriever=self.vector_db.as_retriever(search_kwargs={"k": 1}),
|
139 |
chain_type_kwargs={
|
140 |
"prompt": PromptTemplate(
|
141 |
template=prompt_template,
|
|
|
146 |
)
|
147 |
|
148 |
def query(self, question: str) -> Dict[str, Any]:
|
|
|
149 |
if not self.qa_chain:
|
150 |
return {
|
151 |
"answer": "Knowledge system not initialized. Please reload.",
|
|
|
157 |
start_time = datetime.now()
|
158 |
docs = self._parallel_retrieve(question)
|
159 |
|
|
|
160 |
if not docs:
|
161 |
retriever = self.vector_db.as_retriever(search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS})
|
162 |
docs = retriever.get_relevant_documents(question)
|
163 |
|
|
|
164 |
result = self.qa_chain.invoke({"input_documents": docs, "query": question})
|
|
|
165 |
processing_time = (datetime.now() - start_time).total_seconds() * 1000
|
166 |
|
167 |
return {
|