aamirhameed commited on
Commit
cd5b6a8
·
verified ·
1 Parent(s): 68c1548

Update knowledge_engine.py

Browse files
Files changed (1) hide show
  1. knowledge_engine.py +184 -184
knowledge_engine.py CHANGED
@@ -1,184 +1,184 @@
1
- import os
2
- import pickle
3
- from typing import List, Dict, Any
4
- from datetime import datetime
5
- from concurrent.futures import ThreadPoolExecutor
6
-
7
- from config import Config
8
-
9
- # Core ML/AI libraries
10
- from langchain_community.document_loaders import TextLoader, DirectoryLoader
11
- from langchain.text_splitter import RecursiveCharacterTextSplitter
12
- from langchain_community.vectorstores import FAISS
13
- from langchain_community.embeddings import OllamaEmbeddings
14
- from langchain.chains import RetrievalQA
15
- from langchain.prompts import PromptTemplate
16
- from langchain_community.llms import Ollama
17
- from langchain.retrievers import BM25Retriever
18
-
19
-
20
- class KnowledgeManager:
21
- """Main knowledge management class handling document processing and Q&A with CoT & MoE routing"""
22
-
23
- def __init__(self):
24
- Config.setup_dirs()
25
- self.embeddings = OllamaEmbeddings(model="mxbai-embed-large")
26
- self.vector_db, self.bm25_retriever = self._init_retrievers()
27
- self.qa_chain = self._create_moe_qa_chain()
28
-
29
- def _init_retrievers(self):
30
- faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
31
- faiss_pkl_path = Config.VECTOR_STORE_PATH / "index.pkl"
32
-
33
- if faiss_index_path.exists() and faiss_pkl_path.exists():
34
- try:
35
- vector_db = FAISS.load_local(
36
- str(Config.VECTOR_STORE_PATH),
37
- self.embeddings,
38
- allow_dangerous_deserialization=True
39
- )
40
- if Config.BM25_STORE_PATH.exists():
41
- with open(Config.BM25_STORE_PATH, "rb") as f:
42
- bm25_retriever = pickle.load(f)
43
- return vector_db, bm25_retriever
44
- except Exception as e:
45
- print(f"[!] Error loading existing vector store: {e}. Rebuilding...")
46
-
47
- return self._build_retrievers_from_documents()
48
-
49
- def _build_retrievers_from_documents(self):
50
- if not any(Config.KNOWLEDGE_DIR.glob("**/*.txt")):
51
- print("[i] No knowledge files found. Creating default base...")
52
- self._create_default_knowledge()
53
-
54
- loader = DirectoryLoader(
55
- str(Config.KNOWLEDGE_DIR),
56
- glob="**/*.txt",
57
- loader_cls=TextLoader,
58
- loader_kwargs={'encoding': 'utf-8'}
59
- )
60
- docs = loader.load()
61
- splitter = RecursiveCharacterTextSplitter(
62
- chunk_size=Config.CHUNK_SIZE,
63
- chunk_overlap=Config.CHUNK_OVERLAP,
64
- separators=["\n\n", "\n", ". ", "! ", "? ", "; ", " ", ""]
65
- )
66
- chunks = splitter.split_documents(docs)
67
-
68
- vector_db = FAISS.from_documents(chunks, self.embeddings)
69
- vector_db.save_local(str(Config.VECTOR_STORE_PATH))
70
-
71
- bm25_retriever = BM25Retriever.from_documents(chunks)
72
- bm25_retriever.k = Config.MAX_CONTEXT_CHUNKS
73
-
74
- with open(Config.BM25_STORE_PATH, "wb") as f:
75
- pickle.dump(bm25_retriever, f)
76
-
77
- return vector_db, bm25_retriever
78
-
79
- def _create_default_knowledge(self):
80
- default_text = """Sirraya xBrain - Advanced AI Platform\n\nCreated by Amir Hameed.\n\nFeatures:\n- Hybrid Retrieval (Vector + BM25)\n- LISA Assistant\n- FAISS, Ollama, BM25 Integration"""
81
- with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
82
- f.write(default_text)
83
-
84
- def _parallel_retrieve(self, question: str):
85
- """Parallel retrieval execution: simulates Mixture of Experts routing"""
86
-
87
- def retrieve_with_bm25():
88
- return self.bm25_retriever.get_relevant_documents(question)
89
-
90
- def retrieve_with_vector():
91
- # Lowered threshold to 0.3 for better doc retrieval (adjust as needed)
92
- retriever = self.vector_db.as_retriever(
93
- search_type="similarity_score_threshold",
94
- search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS, "score_threshold": 0.83}
95
- )
96
- return retriever.get_relevant_documents(question)
97
-
98
- with ThreadPoolExecutor(max_workers=2) as executor:
99
- bm25_future = executor.submit(retrieve_with_bm25)
100
- vector_future = executor.submit(retrieve_with_vector)
101
- bm25_results = bm25_future.result()
102
- vector_results = vector_future.result()
103
-
104
- # Combine results; duplicates are possible, consider deduplication if needed
105
- return vector_results + bm25_results
106
-
107
- def _create_moe_qa_chain(self):
108
- if not self.vector_db or not self.bm25_retriever:
109
- return None
110
-
111
- prompt_template = """You are LISA, an AI assistant for Sirraya xBrain. Answer using the context below:
112
-
113
- Context:
114
- {context}
115
-
116
- Question: {question}
117
-
118
- Instructions:
119
- - Use only the context.
120
- - Be accurate and helpful.
121
- - If unsure, say: "I don’t have that information in my knowledge base."
122
-
123
- Answer:"""
124
-
125
- return RetrievalQA.from_chain_type(
126
- llm=Ollama(model="phi", temperature=0.1),
127
- chain_type="stuff",
128
- retriever=self.vector_db.as_retriever(search_kwargs={"k": 1}), # Dummy retriever to satisfy LangChain
129
- chain_type_kwargs={
130
- "prompt": PromptTemplate(
131
- template=prompt_template,
132
- input_variables=["context", "question"]
133
- )
134
- },
135
- return_source_documents=True
136
- )
137
-
138
- def query(self, question: str) -> Dict[str, Any]:
139
- """Query system using CoT + MoE logic"""
140
- if not self.qa_chain:
141
- return {
142
- "answer": "Knowledge system not initialized. Please reload.",
143
- "processing_time": 0,
144
- "source_chunks": []
145
- }
146
-
147
- try:
148
- start_time = datetime.now()
149
- docs = self._parallel_retrieve(question)
150
-
151
- # If no docs found, fallback to retriever without threshold for testing
152
- if not docs:
153
- retriever = self.vector_db.as_retriever(search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS})
154
- docs = retriever.get_relevant_documents(question)
155
-
156
- # Use invoke() for chains with multiple outputs
157
- result = self.qa_chain.invoke({"input_documents": docs, "query": question})
158
-
159
- processing_time = (datetime.now() - start_time).total_seconds() * 1000
160
-
161
- return {
162
- "answer": result.get("result", ""),
163
- "processing_time": processing_time,
164
- "source_chunks": result.get("source_documents", [])
165
- }
166
- except Exception as e:
167
- print(f"[!] Query error: {e}")
168
- return {
169
- "answer": f"Error: {e}",
170
- "processing_time": 0,
171
- "source_chunks": []
172
- }
173
-
174
- def get_knowledge_files_count(self) -> int:
175
- return len(list(Config.KNOWLEDGE_DIR.glob("**/*.txt"))) if Config.KNOWLEDGE_DIR.exists() else 0
176
-
177
- def save_uploaded_file(self, uploaded_file, filename: str) -> bool:
178
- try:
179
- with open(Config.KNOWLEDGE_DIR / filename, "wb") as f:
180
- f.write(uploaded_file.getbuffer())
181
- return True
182
- except Exception as e:
183
- print(f"[!] File save error: {e}")
184
- return False
 
1
+ import os
2
+ import pickle
3
+ from typing import List, Dict, Any
4
+ from datetime import datetime
5
+ from concurrent.futures import ThreadPoolExecutor
6
+
7
+ from config import Config
8
+
9
+ # Core ML/AI libraries
10
+ from langchain_community.document_loaders import TextLoader, DirectoryLoader
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+ from langchain_community.vectorstores import FAISS
13
+ from langchain_community.embeddings import OllamaEmbeddings
14
+ from langchain.chains import RetrievalQA
15
+ from langchain.prompts import PromptTemplate
16
+ from langchain_community.llms import Ollama
17
+ from langchain_community.retrievers import BM25Retriever
18
+
19
+
20
+ class KnowledgeManager:
21
+ """Main knowledge management class handling document processing and Q&A with CoT & MoE routing"""
22
+
23
+ def __init__(self):
24
+ Config.setup_dirs()
25
+ self.embeddings = OllamaEmbeddings(model="mxbai-embed-large")
26
+ self.vector_db, self.bm25_retriever = self._init_retrievers()
27
+ self.qa_chain = self._create_moe_qa_chain()
28
+
29
+ def _init_retrievers(self):
30
+ faiss_index_path = Config.VECTOR_STORE_PATH / "index.faiss"
31
+ faiss_pkl_path = Config.VECTOR_STORE_PATH / "index.pkl"
32
+
33
+ if faiss_index_path.exists() and faiss_pkl_path.exists():
34
+ try:
35
+ vector_db = FAISS.load_local(
36
+ str(Config.VECTOR_STORE_PATH),
37
+ self.embeddings,
38
+ allow_dangerous_deserialization=True
39
+ )
40
+ if Config.BM25_STORE_PATH.exists():
41
+ with open(Config.BM25_STORE_PATH, "rb") as f:
42
+ bm25_retriever = pickle.load(f)
43
+ return vector_db, bm25_retriever
44
+ except Exception as e:
45
+ print(f"[!] Error loading existing vector store: {e}. Rebuilding...")
46
+
47
+ return self._build_retrievers_from_documents()
48
+
49
+ def _build_retrievers_from_documents(self):
50
+ if not any(Config.KNOWLEDGE_DIR.glob("**/*.txt")):
51
+ print("[i] No knowledge files found. Creating default base...")
52
+ self._create_default_knowledge()
53
+
54
+ loader = DirectoryLoader(
55
+ str(Config.KNOWLEDGE_DIR),
56
+ glob="**/*.txt",
57
+ loader_cls=TextLoader,
58
+ loader_kwargs={'encoding': 'utf-8'}
59
+ )
60
+ docs = loader.load()
61
+ splitter = RecursiveCharacterTextSplitter(
62
+ chunk_size=Config.CHUNK_SIZE,
63
+ chunk_overlap=Config.CHUNK_OVERLAP,
64
+ separators=["\n\n", "\n", ". ", "! ", "? ", "; ", " ", ""]
65
+ )
66
+ chunks = splitter.split_documents(docs)
67
+
68
+ vector_db = FAISS.from_documents(chunks, self.embeddings)
69
+ vector_db.save_local(str(Config.VECTOR_STORE_PATH))
70
+
71
+ bm25_retriever = BM25Retriever.from_documents(chunks)
72
+ bm25_retriever.k = Config.MAX_CONTEXT_CHUNKS
73
+
74
+ with open(Config.BM25_STORE_PATH, "wb") as f:
75
+ pickle.dump(bm25_retriever, f)
76
+
77
+ return vector_db, bm25_retriever
78
+
79
+ def _create_default_knowledge(self):
80
+ default_text = """Sirraya xBrain - Advanced AI Platform\n\nCreated by Amir Hameed.\n\nFeatures:\n- Hybrid Retrieval (Vector + BM25)\n- LISA Assistant\n- FAISS, Ollama, BM25 Integration"""
81
+ with open(Config.KNOWLEDGE_DIR / "sirraya_xbrain.txt", "w", encoding="utf-8") as f:
82
+ f.write(default_text)
83
+
84
+ def _parallel_retrieve(self, question: str):
85
+ """Parallel retrieval execution: simulates Mixture of Experts routing"""
86
+
87
+ def retrieve_with_bm25():
88
+ return self.bm25_retriever.get_relevant_documents(question)
89
+
90
+ def retrieve_with_vector():
91
+ # Lowered threshold to 0.3 for better doc retrieval (adjust as needed)
92
+ retriever = self.vector_db.as_retriever(
93
+ search_type="similarity_score_threshold",
94
+ search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS, "score_threshold": 0.83}
95
+ )
96
+ return retriever.get_relevant_documents(question)
97
+
98
+ with ThreadPoolExecutor(max_workers=2) as executor:
99
+ bm25_future = executor.submit(retrieve_with_bm25)
100
+ vector_future = executor.submit(retrieve_with_vector)
101
+ bm25_results = bm25_future.result()
102
+ vector_results = vector_future.result()
103
+
104
+ # Combine results; duplicates are possible, consider deduplication if needed
105
+ return vector_results + bm25_results
106
+
107
+ def _create_moe_qa_chain(self):
108
+ if not self.vector_db or not self.bm25_retriever:
109
+ return None
110
+
111
+ prompt_template = """You are LISA, an AI assistant for Sirraya xBrain. Answer using the context below:
112
+
113
+ Context:
114
+ {context}
115
+
116
+ Question: {question}
117
+
118
+ Instructions:
119
+ - Use only the context.
120
+ - Be accurate and helpful.
121
+ - If unsure, say: "I don’t have that information in my knowledge base."
122
+
123
+ Answer:"""
124
+
125
+ return RetrievalQA.from_chain_type(
126
+ llm=Ollama(model="phi", temperature=0.1),
127
+ chain_type="stuff",
128
+ retriever=self.vector_db.as_retriever(search_kwargs={"k": 1}), # Dummy retriever to satisfy LangChain
129
+ chain_type_kwargs={
130
+ "prompt": PromptTemplate(
131
+ template=prompt_template,
132
+ input_variables=["context", "question"]
133
+ )
134
+ },
135
+ return_source_documents=True
136
+ )
137
+
138
+ def query(self, question: str) -> Dict[str, Any]:
139
+ """Query system using CoT + MoE logic"""
140
+ if not self.qa_chain:
141
+ return {
142
+ "answer": "Knowledge system not initialized. Please reload.",
143
+ "processing_time": 0,
144
+ "source_chunks": []
145
+ }
146
+
147
+ try:
148
+ start_time = datetime.now()
149
+ docs = self._parallel_retrieve(question)
150
+
151
+ # If no docs found, fallback to retriever without threshold for testing
152
+ if not docs:
153
+ retriever = self.vector_db.as_retriever(search_kwargs={"k": Config.MAX_CONTEXT_CHUNKS})
154
+ docs = retriever.get_relevant_documents(question)
155
+
156
+ # Use invoke() for chains with multiple outputs
157
+ result = self.qa_chain.invoke({"input_documents": docs, "query": question})
158
+
159
+ processing_time = (datetime.now() - start_time).total_seconds() * 1000
160
+
161
+ return {
162
+ "answer": result.get("result", ""),
163
+ "processing_time": processing_time,
164
+ "source_chunks": result.get("source_documents", [])
165
+ }
166
+ except Exception as e:
167
+ print(f"[!] Query error: {e}")
168
+ return {
169
+ "answer": f"Error: {e}",
170
+ "processing_time": 0,
171
+ "source_chunks": []
172
+ }
173
+
174
+ def get_knowledge_files_count(self) -> int:
175
+ return len(list(Config.KNOWLEDGE_DIR.glob("**/*.txt"))) if Config.KNOWLEDGE_DIR.exists() else 0
176
+
177
+ def save_uploaded_file(self, uploaded_file, filename: str) -> bool:
178
+ try:
179
+ with open(Config.KNOWLEDGE_DIR / filename, "wb") as f:
180
+ f.write(uploaded_file.getbuffer())
181
+ return True
182
+ except Exception as e:
183
+ print(f"[!] File save error: {e}")
184
+ return False