Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
-
from
|
2 |
-
import
|
3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
|
5 |
-
app =
|
6 |
|
7 |
# Load the LSTM-based language model
|
8 |
-
model_path = "
|
9 |
-
tokenizer = GPT2Tokenizer.from_pretrained("
|
10 |
-
model = GPT2LMHeadModel.from_pretrained("
|
11 |
model.load_state_dict(torch.load(model_path))
|
12 |
|
13 |
# Set the model to evaluation mode
|
@@ -20,16 +20,54 @@ def generate_text(prompt):
|
|
20 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
21 |
return generated_text
|
22 |
|
23 |
-
@app.
|
24 |
-
def home():
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
-
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request, Form
|
2 |
+
from fastapi.responses import HTMLResponse
|
3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
|
5 |
+
app = FastAPI()
|
6 |
|
7 |
# Load the LSTM-based language model
|
8 |
+
model_path = "your_model.pth" # Replace with your model path
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
10 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
11 |
model.load_state_dict(torch.load(model_path))
|
12 |
|
13 |
# Set the model to evaluation mode
|
|
|
20 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
21 |
return generated_text
|
22 |
|
23 |
+
@app.get("/", response_class=HTMLResponse)
|
24 |
+
async def home(request: Request):
|
25 |
+
html_content = """
|
26 |
+
<!DOCTYPE html>
|
27 |
+
<html lang="en">
|
28 |
+
<head>
|
29 |
+
<meta charset="UTF-8">
|
30 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
31 |
+
<title>LSTM Text Generation</title>
|
32 |
+
</head>
|
33 |
+
<body>
|
34 |
+
<h1>LSTM Text Generation</h1>
|
35 |
+
<form id="text-form">
|
36 |
+
<label for="user-input">Enter your input:</label><br>
|
37 |
+
<textarea id="user-input" name="user-input" rows="4" cols="50"></textarea><br>
|
38 |
+
<button type="submit">Generate Text</button>
|
39 |
+
</form>
|
40 |
+
<div id="output"></div>
|
41 |
|
42 |
+
<script>
|
43 |
+
document.getElementById("text-form").addEventListener("submit", function(event) {
|
44 |
+
event.preventDefault();
|
45 |
+
var userInput = document.getElementById("user-input").value;
|
46 |
+
|
47 |
+
fetch("/generate", {
|
48 |
+
method: "POST",
|
49 |
+
headers: {
|
50 |
+
"Content-Type": "application/json"
|
51 |
+
},
|
52 |
+
body: JSON.stringify({ input_text: userInput })
|
53 |
+
})
|
54 |
+
.then(response => response.json())
|
55 |
+
.then(data => {
|
56 |
+
document.getElementById("output").innerText = data.generated_text;
|
57 |
+
});
|
58 |
+
});
|
59 |
+
</script>
|
60 |
+
</body>
|
61 |
+
</html>
|
62 |
+
"""
|
63 |
+
return HTMLResponse(content=html_content, status_code=200)
|
64 |
+
|
65 |
+
@app.post("/generate")
|
66 |
+
async def generate(request: Request, input_text: str = Form(...)):
|
67 |
+
generated_text = generate_text(input_text)
|
68 |
+
return {"generated_text": generated_text}
|
69 |
|
70 |
if __name__ == "__main__":
|
71 |
+
import uvicorn
|
72 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
73 |
+
|