from flask import Flask, render_template, request, jsonify import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer app = Flask(__name__) # Load the LSTM-based language model model_path = "gpt3_mini_quantized_2x_16bits.pth" tokenizer = GPT2Tokenizer.from_pretrained("Deniskin/gpt3_medium") model = GPT2LMHeadModel.from_pretrained("Deniskin/gpt3_medium") model.load_state_dict(torch.load(model_path)) # Set the model to evaluation mode model.eval() # Function to generate text using the model def generate_text(prompt): input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=50, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text @app.route("/") def home(): return render_template("index.html") @app.route("/generate", methods=["POST"]) def generate(): data = request.json user_input = data["input_text"] generated_text = generate_text(user_input) return jsonify({"generated_text": generated_text}) if __name__ == "__main__": app.run(debug=True)