Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,50 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import os
|
| 3 |
-
import cv2
|
| 4 |
-
import torch
|
| 5 |
-
import numpy as np
|
| 6 |
-
from PIL import Image
|
| 7 |
-
from gfpgan import GFPGANer
|
| 8 |
-
|
| 9 |
-
# Download GFPGAN model if not already present
|
| 10 |
-
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
|
| 11 |
-
model_path = "GFPGANv1.4.pth"
|
| 12 |
-
|
| 13 |
-
if not os.path.exists(model_path):
|
| 14 |
-
import requests
|
| 15 |
-
r = requests.get(model_url, allow_redirects=True)
|
| 16 |
-
open(model_path, 'wb').write(r.content)
|
| 17 |
-
|
| 18 |
-
# Initialize GFPGAN
|
| 19 |
-
restorer = GFPGANer(
|
| 20 |
-
model_path=model_path,
|
| 21 |
-
upscale=2,
|
| 22 |
-
arch='clean',
|
| 23 |
-
channel_multiplier=2,
|
| 24 |
-
bg_upsampler=None
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
def enhance(image):
|
| 28 |
-
# Convert PIL to numpy
|
| 29 |
-
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 30 |
-
|
| 31 |
-
_, _, restored_img = restorer.enhance(
|
| 32 |
-
img,
|
| 33 |
-
has_aligned=False,
|
| 34 |
-
only_center_face=False,
|
| 35 |
-
paste_back=True
|
| 36 |
-
)
|
| 37 |
-
|
| 38 |
-
restored_pil = Image.fromarray(cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB))
|
| 39 |
-
return restored_pil
|
| 40 |
-
|
| 41 |
-
iface = gr.Interface(
|
| 42 |
-
fn=enhance,
|
| 43 |
-
inputs=gr.Image(type="pil"),
|
| 44 |
-
outputs="image",
|
| 45 |
-
title="IMGEN - AI Photo Enhancer",
|
| 46 |
-
description="Upload your photo (ID, CV, profile) and enhance it with AI using GFPGAN."
|
| 47 |
-
)
|
| 48 |
-
|
| 49 |
-
if __name__ == "__main__":
|
| 50 |
-
iface.launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import cv2
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
from gfpgan import GFPGANer
|
| 8 |
+
|
| 9 |
+
# Download GFPGAN model if not already present
|
| 10 |
+
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
|
| 11 |
+
model_path = "GFPGANv1.4.pth"
|
| 12 |
+
|
| 13 |
+
if not os.path.exists(model_path):
|
| 14 |
+
import requests
|
| 15 |
+
r = requests.get(model_url, allow_redirects=True)
|
| 16 |
+
open(model_path, 'wb').write(r.content)
|
| 17 |
+
|
| 18 |
+
# Initialize GFPGAN
|
| 19 |
+
restorer = GFPGANer(
|
| 20 |
+
model_path=model_path,
|
| 21 |
+
upscale=2,
|
| 22 |
+
arch='clean',
|
| 23 |
+
channel_multiplier=2,
|
| 24 |
+
bg_upsampler=None
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
def enhance(image):
|
| 28 |
+
# Convert PIL to numpy
|
| 29 |
+
img = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 30 |
+
|
| 31 |
+
_, _, restored_img = restorer.enhance(
|
| 32 |
+
img,
|
| 33 |
+
has_aligned=False,
|
| 34 |
+
only_center_face=False,
|
| 35 |
+
paste_back=True
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
restored_pil = Image.fromarray(cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB))
|
| 39 |
+
return restored_pil
|
| 40 |
+
|
| 41 |
+
iface = gr.Interface(
|
| 42 |
+
fn=enhance,
|
| 43 |
+
inputs=gr.Image(type="pil"),
|
| 44 |
+
outputs="image",
|
| 45 |
+
title="IMGEN - AI Photo Enhancer",
|
| 46 |
+
description="Upload your photo (ID, CV, profile) and enhance it with AI using GFPGAN."
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
iface.launch()
|