Spaces:
Sleeping
Sleeping
File size: 33,711 Bytes
67bbd6f 27ea902 67bbd6f 9958640 67bbd6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
import os
import glob
import gradio as gr
from dotenv import load_dotenv
from typing import List, Dict, Any, Tuple, Optional
import uuid
import torch
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings("ignore")
# Updated imports to avoid deprecation warnings
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain_text_splitters import CharacterTextSplitter
from langchain_core.documents import Document
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
# Modern LangChain chains (replacing deprecated ConversationalRetrievalChain)
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
from langchain.chains.combine_documents import create_stuff_documents_chain
# Multi-provider LLM support
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
# Supabase integration (pre-configured by admin)
from langchain_community.vectorstores import SupabaseVectorStore
from supabase.client import Client, create_client
# Hugging Face Transformers for local Qwen model
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import accelerate
# Configuration
DEFAULT_MODEL = "Qwen/Qwen2.5-Coder-7B-Instruct-AWQ" # Quantized version for better performance
TOP_K_DOCUMENTS = 5
# Model configurations for each provider
MODEL_CONFIGS = {
"openai": {
"budget": "gpt-4o-mini",
"premium": "o4-mini"
},
"anthropic": {
"budget": "claude-3-5-sonnet-20241022",
"premium": "claude-4-sonnet-20250109"
},
"google": {
"budget": "gemini-2.0-flash-exp",
"premium": "gemini-2.0-flash-thinking-exp-1219"
}
}
# Load environment variables
load_dotenv(override=True)
class OCS4DevAssistant:
def __init__(self):
self.setup_environment()
self.setup_local_model()
self.setup_vector_store()
self.chat_history = []
self.current_provider = "local"
self.current_model_tier = "budget"
def setup_environment(self):
"""Setup environment variables - only Supabase required for vector store"""
# Supabase credentials (pre-configured by admin)
self.supabase_url = os.getenv('SUPABASE_URL')
self.supabase_key = os.getenv('SUPABASE_SERVICE_KEY')
if not self.supabase_url or not self.supabase_key:
print("β οΈ Supabase not configured. Vector search will be disabled.")
self.supabase_url = None
self.supabase_key = None
# API keys (provided by users in UI)
self.openai_api_key = os.getenv('OPENAI_API_KEY')
self.anthropic_api_key = os.getenv('ANTHROPIC_API_KEY')
self.google_api_key = os.getenv('GOOGLE_API_KEY')
def setup_local_model(self):
"""Initialize the local Qwen2.5-Coder model"""
print("π Loading Qwen2.5-Coder-7B-Instruct (AWQ quantized)...")
try:
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
DEFAULT_MODEL,
trust_remote_code=True
)
# Load quantized model
self.local_model = AutoModelForCausalLM.from_pretrained(
DEFAULT_MODEL,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None,
trust_remote_code=True,
low_cpu_mem_usage=True
)
# Create pipeline for easier inference
self.local_pipeline = pipeline(
"text-generation",
model=self.local_model,
tokenizer=self.tokenizer,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map="auto" if device == "cuda" else None,
max_new_tokens=1024,
temperature=0.3,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
print("β
Local Qwen2.5-Coder model loaded successfully!")
except Exception as e:
print(f"β Error loading local model: {e}")
print("Model will be downloaded on first use...")
self.local_model = None
self.local_pipeline = None
self.tokenizer = None
def setup_vector_store(self):
"""Initialize vector store for retrieval only"""
if not self.supabase_url or not self.supabase_key:
self.vector_store = None
print("β οΈ Supabase credentials not found. Vector store disabled.")
print(" To enable, set SUPABASE_URL and SUPABASE_SERVICE_KEY environment variables.")
return
try:
self.supabase_client = create_client(self.supabase_url, self.supabase_key)
# Test connection and check if data exists
response = self.supabase_client.table("fintech_api_docs").select("count").execute()
doc_count = len(response.data) if response.data else 0
if doc_count == 0:
print("β οΈ Supabase connected but no documents found in the database.")
print(" Run the populate_supabase.py tool to add documents first.")
else:
print(f"β
Supabase connected! Documents available: {doc_count}")
# Use OpenAI embeddings for retrieval
# Note: This requires a valid OpenAI API key for similarity search
if self.openai_api_key:
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-small",
openai_api_key=self.openai_api_key
)
else:
print("β οΈ No OpenAI API key found. Using fallback embeddings.")
print(" For best results, provide an OpenAI API key.")
# Fallback: still create embeddings object but searches may not work properly
self.embeddings = OpenAIEmbeddings(
model="text-embedding-3-small",
openai_api_key="dummy-key"
)
# Initialize vector store as retriever only
self.vector_store = SupabaseVectorStore(
client=self.supabase_client,
embedding=self.embeddings,
table_name="fintech_api_docs",
query_name="match_documents"
)
print("β
Vector store initialized as retriever!")
except Exception as e:
print(f"β Vector store setup failed: {e}")
print(" Ensure your Supabase table 'fintech_api_docs' exists with proper schema.")
print(" Run the populate_supabase.py tool to set up the database.")
self.vector_store = None
def get_llm_instance(self, provider: str, tier: str, api_key: Optional[str] = None):
"""Get LLM instance based on provider and tier"""
if provider == "local":
return self.local_pipeline
if not api_key:
raise ValueError(f"API key required for {provider}")
model_name = MODEL_CONFIGS[provider][tier]
if provider == "openai":
return ChatOpenAI(
model=model_name,
temperature=0.3,
max_tokens=1000,
openai_api_key=api_key
)
elif provider == "anthropic":
return ChatAnthropic(
model=model_name,
temperature=0.3,
max_tokens=1000,
anthropic_api_key=api_key
)
elif provider == "google":
return ChatGoogleGenerativeAI(
model=model_name,
temperature=0.3,
max_output_tokens=1000,
google_api_key=api_key
)
else:
raise ValueError(f"Unsupported provider: {provider}")
def generate_local_response(self, prompt: str, context: str = "") -> str:
"""Generate response using local Qwen model"""
if not self.local_pipeline or not self.tokenizer:
# Try to load model if not loaded
self.setup_local_model()
if not self.local_pipeline or not self.tokenizer:
return "β Local model not available. Please use API providers or check your setup."
# Format prompt for Qwen2.5-Coder
system_prompt = f"""You are ocs4dev, a specialized fintech API integration assistant. You help developers integrate fintech APIs including MTN MoMo, Pesapal, and Sentezo.
Your expertise includes:
- API authentication and security
- Code examples and implementation
- Error handling and debugging
- Testing and best practices
- Payment gateway integration
Always provide practical, code-focused responses with examples.
Context: {context}"""
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
# Apply chat template
formatted_prompt = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
try:
# Generate response
outputs = self.local_pipeline(
formatted_prompt,
max_new_tokens=1024,
temperature=0.3,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
# Extract generated text
response = outputs[0]["generated_text"]
# Remove the input prompt from response
if formatted_prompt in response:
response = response.replace(formatted_prompt, "").strip()
return response
except Exception as e:
return f"β Error generating response: {str(e)}"
def get_retrieval_context(self, query: str) -> str:
"""Get relevant context from vector store"""
if not self.vector_store:
return ""
try:
docs = self.vector_store.similarity_search(query, k=TOP_K_DOCUMENTS)
context = "\n\n".join([doc.page_content for doc in docs])
return context
except Exception as e:
print(f"Error retrieving context: {e}")
return ""
def create_retrieval_chain(self, llm, provider: str):
"""Create retrieval chain for API models"""
if not self.vector_store:
return None
# Create retriever
retriever = self.vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": TOP_K_DOCUMENTS}
)
# Contextualize question prompt
contextualize_q_system_prompt = """
You are ocs4dev, a fintech API integration expert. Given a chat history and the latest user question
which might reference context in the chat history, formulate a standalone question
which can be understood without the chat history. Focus on fintech API integration.
Do NOT answer the question, just reformulate it if needed and otherwise return it as is.
"""
contextualize_q_prompt = ChatPromptTemplate.from_messages([
("system", contextualize_q_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
])
# Create history-aware retriever
history_aware_retriever = create_history_aware_retriever(
llm, retriever, contextualize_q_prompt
)
# Question answering prompt
qa_system_prompt = """
You are ocs4dev, a specialized fintech API integration assistant. Use the following context
to help developers integrate fintech APIs (MTN MoMo, Pesapal, Sentezo, etc.).
Your responses should:
1. Be technically accurate and detailed
2. Include relevant code examples and snippets
3. Provide step-by-step implementation guidance
4. Include error handling best practices
5. Reference specific API endpoints and parameters
6. Suggest testing approaches
Format code blocks properly with language specification for syntax highlighting.
Always provide practical, actionable advice.
Context: {context}
"""
qa_prompt = ChatPromptTemplate.from_messages([
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
])
# Create document chain
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
# Create final RAG chain
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
return rag_chain
def update_model_config(self, provider: str, tier: str, api_key: str = None):
"""Update current model configuration"""
self.current_provider = provider
self.current_model_tier = tier
if provider != "local" and api_key:
if provider == "openai":
self.openai_api_key = api_key
elif provider == "anthropic":
self.anthropic_api_key = api_key
elif provider == "google":
self.google_api_key = api_key
def chat(self, message: str, history: List[Tuple[str, str]], provider: str, tier: str, api_key: str = None) -> str:
"""Main chat function - returns full response (streaming handled by Gradio)"""
try:
# Update model configuration
self.update_model_config(provider, tier, api_key)
if provider == "local":
# Use local model with context
context = self.get_retrieval_context(message)
return self.generate_local_response(message, context)
else:
# Use API model
api_key_map = {
"openai": self.openai_api_key,
"anthropic": self.anthropic_api_key,
"google": self.google_api_key
}
current_api_key = api_key or api_key_map.get(provider)
if not current_api_key:
return f"β No API key provided for {provider}. Please enter your API key in the settings."
# Get LLM instance
llm = self.get_llm_instance(provider, tier, current_api_key)
# Create retrieval chain
rag_chain = self.create_retrieval_chain(llm, provider)
if not rag_chain:
# Fallback to simple context if no vector store
context = self.get_retrieval_context(message)
simple_prompt = f"Context: {context}\n\nQuestion: {message}\n\nProvide a detailed response about fintech API integration."
return llm.invoke(simple_prompt).content
# Convert Gradio history to LangChain format
chat_history = []
for human, assistant in history:
chat_history.append(HumanMessage(content=human))
chat_history.append(AIMessage(content=assistant))
# Invoke RAG chain
response = rag_chain.invoke({
"input": message,
"chat_history": chat_history
})
return response["answer"]
except Exception as e:
return f"β Error processing request: {str(e)}"
def create_gradio_interface():
"""Create the Gradio interface optimized for HuggingFace Spaces"""
print("π Starting ocs4dev - Your Fintech API Integration Assistant")
# Initialize assistant
try:
assistant = OCS4DevAssistant()
print("β
ocs4dev initialized successfully!")
except Exception as e:
print(f"β Failed to initialize ocs4dev: {e}")
return None
# Custom CSS for better styling and copy buttons
custom_css = """
.warning-box {
background-color: #fff3cd;
border: 1px solid #ffeaa7;
border-radius: 8px;
padding: 12px;
margin: 10px 0;
font-size: 14px;
color: #856404 !important;
}
.model-info {
background-color: #e3f2fd;
border-left: 4px solid #2196f3;
padding: 12px;
margin: 10px 0;
border-radius: 4px;
color: #1565c0 !important;
}
.feature-box {
background-color: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
color: #212529 !important;
}
.code-block {
background-color: #f8f9fa;
border: 1px solid #e9ecef;
border-radius: 6px;
padding: 12px;
margin: 8px 0;
position: relative;
font-family: 'Courier New', monospace;
color: #212529 !important;
}
.copy-button {
position: absolute;
top: 8px;
right: 8px;
background: #007bff;
color: white;
border: none;
padding: 4px 8px;
border-radius: 4px;
cursor: pointer;
font-size: 12px;
}
.copy-button:hover {
background: #0056b3;
}
/* Hide Gradio footer */
.footer {
display: none !important;
}
/* Overlay backdrop */
.sidebar-backdrop {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background: rgba(0, 0, 0, 0.5);
z-index: 999;
display: none;
}
.sidebar-backdrop.show {
display: block;
}
/* Sidebar as overlay */
.sidebar-container {
position: fixed;
left: 0;
top: 0;
height: 100vh;
width: 400px; /* Wider sidebar for better text display */
max-width: 90vw; /* Responsive on mobile */
background: var(--background-fill-primary);
border-right: 1px solid var(--border-color-primary);
transform: translateX(-100%);
transition: transform 0.3s ease;
z-index: 1000;
overflow-y: auto;
overflow-x: hidden;
padding: 20px;
padding-top: 60px; /* Space for close button */
box-sizing: border-box;
box-shadow: 2px 0 10px rgba(0, 0, 0, 0.1);
}
.sidebar-container.open {
transform: translateX(0);
}
/* Fix white spaces in sidebar */
.sidebar-container .gr-form {
gap: 0 !important;
}
.sidebar-container .gr-box {
border: none !important;
background: transparent !important;
}
.sidebar-container .gr-padded {
padding: 8px !important;
}
.sidebar-container .gr-panel {
background: var(--background-fill-secondary) !important;
padding: 12px !important;
border-radius: 8px;
margin-bottom: 12px;
}
/* Style sidebar content */
.sidebar-container h2 {
color: var(--body-text-color) !important;
margin-bottom: 20px;
font-size: 1.5rem;
}
.sidebar-container .gr-markdown h2 {
color: var(--body-text-color) !important;
margin-top: 0;
}
/* Remove unwanted white borders and backgrounds */
.sidebar-container .gradio-container {
background: transparent !important;
border: none !important;
}
.sidebar-container .gr-form {
background: transparent !important;
border: none !important;
gap: 12px !important;
}
.sidebar-container .gr-input-wrapper {
margin: 0 !important;
}
.sidebar-container .gr-group {
background: var(--background-fill-secondary) !important;
border: 1px solid var(--border-color-primary) !important;
border-radius: 8px;
padding: 12px;
margin-bottom: 12px;
}
/* Ensure text visibility in sidebar */
.sidebar-container * {
color: var(--body-text-color) !important;
}
.sidebar-title {
font-size: 1.5rem !important;
font-weight: bold !important;
margin-bottom: 20px !important;
color: var(--body-text-color) !important;
}
.sidebar-toggle {
position: fixed;
left: 20px;
top: 20px;
z-index: 998;
background: var(--button-primary-background-fill);
color: var(--button-primary-text-color);
border: none;
padding: 12px 16px;
border-radius: 8px;
cursor: pointer;
font-size: 18px;
transition: all 0.3s ease;
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
}
.sidebar-toggle:hover {
background: var(--button-primary-background-fill-hover);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
}
.sidebar-close {
position: absolute;
right: 20px;
top: 20px;
background: transparent;
border: none;
font-size: 24px;
cursor: pointer;
color: var(--body-text-color);
padding: 5px;
border-radius: 4px;
transition: background 0.2s ease;
z-index: 1001;
}
.sidebar-close:hover {
background: var(--background-fill-secondary);
}
/* Main content stays in place */
.main-content {
min-height: 100vh;
padding-left: 70px; /* Space for menu button */
}
/* Custom chat styling */
.chat-container {
max-width: 100%;
margin: 0 auto;
padding: 20px;
}
/* Dark mode specific fixes */
.dark .sidebar-container {
background: var(--background-fill-primary);
}
.dark .warning-box {
background-color: #2d2d2d;
border: 1px solid #ffc107;
color: #ffc107 !important;
}
.dark .model-info {
background-color: #1a1a1a;
border-left: 4px solid #64b5f6;
color: #64b5f6 !important;
}
.dark .feature-box {
background-color: #2d2d2d;
border: 1px solid #495057;
color: #e9ecef !important;
}
/* Responsive adjustments */
@media (max-width: 768px) {
.sidebar-container {
width: 85vw;
}
.main-content {
padding-left: 60px;
}
}
"""
# Create the interface
def chat_with_config(message, history, provider, tier, openai_key, anthropic_key, google_key):
"""Chat function with configuration"""
api_key = None
if provider == "openai":
api_key = openai_key
elif provider == "anthropic":
api_key = anthropic_key
elif provider == "google":
api_key = google_key
return assistant.chat(message, history, provider, tier, api_key)
# Create interface
with gr.Blocks(
title="ocs4dev - Fintech API Assistant",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
neutral_hue="slate",
),
css=custom_css,
fill_height=True,
js="""
function() {
// Add sidebar toggle functionality with backdrop
const backdrop = document.createElement('div');
backdrop.className = 'sidebar-backdrop';
document.body.appendChild(backdrop);
const toggleButton = document.createElement('button');
toggleButton.innerHTML = 'β°';
toggleButton.className = 'sidebar-toggle';
toggleButton.title = 'Open Settings';
const sidebar = document.querySelector('.sidebar-container');
// Add close button to sidebar
const closeButton = document.createElement('button');
closeButton.innerHTML = 'β';
closeButton.className = 'sidebar-close';
closeButton.title = 'Close Settings';
sidebar.insertBefore(closeButton, sidebar.firstChild);
function openSidebar() {
sidebar.classList.add('open');
backdrop.classList.add('show');
document.body.style.overflow = 'hidden';
}
function closeSidebar() {
sidebar.classList.remove('open');
backdrop.classList.remove('show');
document.body.style.overflow = '';
}
toggleButton.onclick = openSidebar;
closeButton.onclick = closeSidebar;
backdrop.onclick = closeSidebar;
// ESC key to close
document.addEventListener('keydown', (e) => {
if (e.key === 'Escape' && sidebar.classList.contains('open')) {
closeSidebar();
}
});
document.body.appendChild(toggleButton);
}
"""
) as interface:
# Header
with gr.Column(elem_classes="main-content"):
gr.Markdown("# π¦ ocs4dev - Your Fintech API Integration Assistant")
gr.Markdown("*Specialized AI assistant for integrating fintech APIs including MTN MoMo, Airtel, Pesapal etc*")
# Main chat interface
chatbot = gr.Chatbot(
height=500,
placeholder="Ask me about fintech API integration, authentication, code examples, or best practices...",
label="ocs4dev Assistant",
show_copy_button=True, # Enable copy button for chat messages
render_markdown=True,
elem_classes="chat-container"
)
msg = gr.Textbox(
placeholder="How do I authenticate with MTN MoMo API?",
label="Your Question",
lines=2,
show_copy_button=True # Enable copy button for input
)
with gr.Row():
clear = gr.Button("Clear", variant="secondary")
submit = gr.Button("Send", variant="primary")
# Example questions
gr.Examples(
examples=[
"How do I authenticate with MTN MoMo API?",
"Show me a Pesapal payment integration example",
"What are the required headers for Sentezo API?",
"How do I handle payment webhooks?",
"Best practices for API error handling",
"How to test API integrations in sandbox mode?",
"Show me a complete payment flow implementation",
"How to secure API keys in production?",
"What's the difference between sandbox and production?",
"How do I implement payment status callbacks?"
],
inputs=msg,
label="π‘ Example Questions"
)
# Sidebar (hidden by default)
with gr.Column(elem_classes="sidebar-container", elem_id="settings-sidebar"):
gr.Markdown("## βοΈ Configuration", elem_classes="sidebar-title")
# Model provider selection
with gr.Group():
provider = gr.Radio(
choices=["local", "openai", "anthropic", "google"],
value="local",
label="Model Provider",
info="Local model is free but requires GPU. API models need keys.",
elem_classes="provider-selector"
)
tier = gr.Radio(
choices=["budget", "premium"],
value="budget",
label="Model Tier",
info="Budget models are faster/cheaper, Premium models are more capable",
elem_classes="tier-selector"
)
# API Keys Section
with gr.Accordion("π API Keys", open=True, elem_classes="api-keys-section"):
gr.HTML('<div class="warning-box">β οΈ <strong>Security Warning:</strong> Create test API keys for this app and delete them after use. Never share production keys.</div>')
with gr.Group():
openai_key = gr.Textbox(
placeholder="sk-...",
label="OpenAI API Key",
type="password",
info="Budget: gpt-4o-mini | Premium: o4-mini (advanced reasoning)",
elem_classes="api-key-input"
)
anthropic_key = gr.Textbox(
placeholder="sk-ant-...",
label="Anthropic API Key",
type="password",
info="Budget: claude-3.5-sonnet | Premium: claude-4-sonnet",
elem_classes="api-key-input"
)
google_key = gr.Textbox(
placeholder="AI...",
label="Google API Key",
type="password",
info="Budget: gemini-2.0-flash | Premium: gemini-2.0-flash-thinking",
elem_classes="api-key-input"
)
# Updated model information
gr.HTML('<div class="model-info">π <strong>Pro Tip:</strong> Add your API keys above for faster and better responses. Local model works but API models provide superior performance!</div>')
# Features
with gr.Accordion("β¨ Features", open=False, elem_classes="features-section"):
gr.HTML('''
<div class="feature-box">
<strong>π§ Code-Focused:</strong> Optimized for API integration tasks<br>
<strong>π Secure:</strong> No API keys stored permanently<br>
<strong>π Copy-Friendly:</strong> Easy code copying with built-in buttons<br>
<strong>π Fast:</strong> Multiple model options for best performance<br>
<strong>π Multi-Provider:</strong> Switch between AI models seamlessly
</div>
''')
# Chat functionality with simple response
def respond(message, history, provider, tier, openai_key, anthropic_key, google_key):
"""Handle chat responses with simulated streaming"""
if not message:
return history, ""
# Add user message to history
history = history or []
# Get the full response
bot_message = chat_with_config(message, history, provider, tier, openai_key, anthropic_key, google_key)
# Simulate streaming by yielding partial responses
partial = ""
words = bot_message.split(" ")
# Stream words in chunks for smooth appearance
chunk_size = 3 # Words per chunk
for i in range(0, len(words), chunk_size):
chunk = " ".join(words[i:i+chunk_size])
partial += chunk + " "
yield history + [(message, partial.strip())], ""
# Final update with complete response
yield history + [(message, bot_message)], ""
# Connect the interface
submit.click(
respond,
inputs=[msg, chatbot, provider, tier, openai_key, anthropic_key, google_key],
outputs=[chatbot, msg]
)
msg.submit(
respond,
inputs=[msg, chatbot, provider, tier, openai_key, anthropic_key, google_key],
outputs=[chatbot, msg]
)
clear.click(lambda: ([], ""), outputs=[chatbot, msg])
# Footer
gr.Markdown("---")
gr.Markdown("Built with β€οΈ by Aaron | Using Qwen2.5-Coder, LangChain, and Gradio | [GitHub](https://github.com/aaron-official/ocs4dev.git)")
return interface
def populate_knowledge_base_standalone():
"""[DEPRECATED] Use the separate populate_supabase.py tool instead"""
print("β οΈ This function is deprecated!")
print(" Please use the separate 'populate_supabase.py' tool to populate the vector database.")
print(" ")
print(" Usage:")
print(" $ python populate_supabase.py --knowledge-base ./knowledge-base")
print(" ")
print(" The tool will:")
print(" 1. Load all markdown files from your knowledge base directory")
print(" 2. Split them into chunks for better retrieval")
print(" 3. Generate embeddings using OpenAI")
print(" 4. Store everything in your Supabase vector database")
print(" ")
print(" Make sure you have set these environment variables:")
print(" - SUPABASE_URL")
print(" - SUPABASE_SERVICE_KEY")
print(" - OPENAI_API_KEY")
return False
def main():
"""Main function optimized for HuggingFace Spaces"""
interface = create_gradio_interface()
if interface:
# HuggingFace Spaces optimized launch
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True, # Enable public URL for HF Spaces
inbrowser=False, # Don't open browser in server environment
show_error=True,
quiet=False,
max_threads=10 # Limit concurrent requests
)
if __name__ == "__main__":
main() |