Spaces:
Runtime error
Runtime error
File size: 11,998 Bytes
16152ad 4b2f91d 16152ad daf3cd4 16152ad 4b2f91d 16152ad 4b2f91d 16152ad 4b2f91d 16152ad 4b2f91d 16152ad 4b2f91d 16152ad 4b2f91d 16152ad 4b2f91d 16152ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
import streamlit as st
import pandas as pd
import requests
from datetime import datetime, timedelta
import time
import csv
from dotenv import load_dotenv
import os
import torch
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertForSequenceClassification
import matplotlib.pyplot as plt
import altair as alt
from transformers import pipeline # Importing pipeline from transformers
# Load environment variables from .env file
load_dotenv()
AppID = os.getenv('APP_ID')
APIKey = os.getenv('API_KEY')
PolygonAPIKey = os.getenv('POLYGON_API_KEY')
api_token = os.getenv('API_TOKEN')
time.sleep(1)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
st.set_page_config(
page_title="Stock News and Data Analysis",
page_icon="π",
initial_sidebar_state="expanded",
)
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, features, tokenizer, max_length=512):
self.features = features
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.features)
def __getitem__(self, idx):
feature = self.features.iloc[idx]
text = f"{feature['Keywords']}"
inputs = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_length,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
return inputs
def get_auth_header(app_id, api_key):
return {
'X-Application-Id': app_id,
'X-Application-Key': api_key
}
def fetch_stories_for_date_range(ticker, headers, start_date, end_date):
all_stories = []
params = {
'entities.stock_tickers': ticker,
'published_at.start': start_date.strftime('%Y-%m-%dT%H:%M:%SZ'),
'published_at.end': end_date.strftime('%Y-%m-%dT%H:%M:%SZ'),
'language': 'en',
'per_page': 100,
'sort_by': 'published_at',
'sort_direction': 'desc'
}
while True:
time.sleep(1)
response = requests.get('https://api.aylien.com/news/stories', headers=headers, params=params)
if response.status_code == 200:
data = response.json()
stories = data.get('stories', [])
if not stories:
break
all_stories.extend(stories)
if 'next' in data.get('links', {}):
params['cursor'] = data['links']['next']
else:
break
else:
break
return all_stories
def get_stock_data(api_key, symbol, start_date, end_date):
time.sleep(1)
base_url = f"https://api.polygon.io/v2/aggs/ticker/{symbol}/range/1/day/{start_date}/{end_date}?apiKey={api_key}"
response = requests.get(base_url)
if response.status_code == 200:
data = response.json()
return data.get('results', [])
else:
return []
def predict_stock_price(model, new_dataloader):
model.eval()
predictions = []
with torch.no_grad():
for batch_inputs in new_dataloader:
batch_inputs = {key: val.squeeze(1).to(device) for key, val in batch_inputs.items()}
outputs = model(**batch_inputs)
logits = outputs.logits
predictions.extend(logits.flatten().cpu().detach().numpy())
return predictions
# Function to load HF model and tokenizer
def load_hf_model_and_tokenizer(model_name):
model = BertForSequenceClassification.from_pretrained(model_name)
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
return model, tokenizer
# Main app interface
st.title("Stock News and Data Analysis")
tickers = ['AMZN', 'TSLA', 'MSFT', 'AAPL','AMD', 'GOOGL', 'NVDA']
tab1, tab2 = st.tabs(["News and Stock Data", "Predictive Stock Price"])
with tab1:
selected_ticker = st.selectbox('Select a stock symbol:', tickers)
start_date = st.date_input("Start date", datetime.now() - timedelta(days=30))
end_date = st.date_input("End date", datetime.now())
# Fetch Stock Data Button and functionality
if st.button('Fetch Stock Data'):
stock_data = get_stock_data(PolygonAPIKey, selected_ticker, start_date, end_date)
if stock_data:
stock_df = pd.DataFrame(stock_data)
stock_df['date'] = pd.to_datetime(stock_df['t'], unit='ms').dt.date
stock_df.rename(columns={'v': 'Volume', 'o': 'Open', 'c': 'Close', 'h': 'High', 'l': 'Low'}, inplace=True)
st.subheader(f"Stock Data for {selected_ticker}")
st.dataframe(stock_df.style.format(subset=['Open', 'Close', 'High', 'Low'], formatter="{:.2f}"))
# Enhance the chart
# Show chart title
st.write(f"Stock Price Chart for {selected_ticker}")
line_chart = alt.Chart(stock_df).mark_line().encode(
x=alt.X('date:T', title='Date'),
y=alt.Y('Close:Q', title='Close Price'),
tooltip=['date', 'Open', 'High', 'Low', 'Close', 'Volume']
).interactive().properties(
width=800,
height=400
)
st.altair_chart(line_chart, use_container_width=True)
else:
st.error('Failed to fetch stock data. Please check the ticker or try again later.')
# Initialize session state variables
if 'story_index' not in st.session_state:
st.session_state.story_index = 0 # Index to keep track of displayed stories
if 'fetched_stories' not in st.session_state:
st.session_state.fetched_stories = []
with st.expander("News Stories", expanded=True):
headers = get_auth_header(AppID, APIKey)
# Fetch stories only if we haven't already, or if the "Fetch News Stories" button is pressed
if st.button('Fetch News Stories') or not st.session_state.fetched_stories:
st.session_state.fetched_stories = fetch_stories_for_date_range(selected_ticker, headers, start_date, end_date)
st.session_state.story_index = 0 # Reset story index
if st.session_state.fetched_stories:
displayed_stories = st.session_state.fetched_stories[st.session_state.story_index:st.session_state.story_index + 5]
for story in displayed_stories:
st.markdown(f"**Title:** {story.get('title')}")
st.markdown(f"**Summary:** {story.get('body')}")
sentiment = story.get('sentiment', {}).get('polarity', 'neutral')
sentiment_icon = "π΄" if sentiment == "negative" else "π’" if sentiment == "positive" else "π‘"
st.markdown(f"**Sentiment:** {sentiment_icon} {sentiment.capitalize()}")
st.markdown(f"**Source:** {story.get('source', {}).get('name')}")
st.markdown(f"**Published At:** {story.get('published_at')}")
st.markdown("---")
# Load More Stories Button
if st.button('Load More Stories'):
# Check if there are more stories to load
if st.session_state.story_index + 5 < len(st.session_state.fetched_stories):
st.session_state.story_index += 5
st.rerun()
else:
st.warning("No more stories to load.")
else:
st.error('No stories fetched. Please check the ticker or try a different date range.')
with tab2:
stock_mapping = {
"AAPL": {"csv_path": "CurrentDatabase/AAPL_db.csv", "model_name": "aayush9/saved_model_AAPL"},
"AMD": {"csv_path": "CurrentDatabase/AMD_db.csv", "model_name": "aayush9/saved_model_AMD"},
"GOOGL": {"csv_path": "CurrentDatabase/GOOGL_db.csv", "model_name": "aayush9/saved_model_GOOGL"},
"MSFT": {"csv_path": "CurrentDatabase/MSFT_db.csv", "model_name": "aayush9/saved_model_MSFT"},
"NVDA": {"csv_path": "CurrentDatabase/NVDA_db.csv", "model_name": "aayush9/saved_model_NVDA"},
"TSLA": {"csv_path": "CurrentDatabase/TSLA_db.csv", "model_name": "aayush9/saved_model_TSLA"},
"AMZN": {"csv_path": "CurrentDatabase/AMZN_db.csv", "model_name": "aayush9/saved_model_AMZN"}
}
# Select stock symbol from dropdown
selected_stock = st.selectbox("Select a stock symbol:", list(stock_mapping.keys()))
# Load the new data
new_data = pd.read_csv(stock_mapping[selected_stock]["csv_path"])
# Convert 'Sentiment Polarity' to numerical representation
new_data['Sentiment Polarity'] = new_data['Sentiment Polarity'].map({'neutral': 0, 'positive': 1, 'negative': -1})
# Convert 'Publication Date' and 'stock_date' to datetime objects
new_data['Publication Date'] = pd.to_datetime(new_data['Publication Date'])
new_data['stock_date'] = pd.to_datetime(new_data['stock_date'])
# Use only required columns
new_data = new_data[['Publication Date', 'Sentiment Polarity', 'Sentiment Confidence', 'Keywords', 'stock_date', 'percentage_change']]
# Load HF model and tokenizer
model_name = stock_mapping[selected_stock]["model_name"]
model, tokenizer = load_hf_model_and_tokenizer(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Create DataLoader for the new data
new_dataset = CustomDataset(new_data, tokenizer)
new_dataloader = DataLoader(new_dataset, batch_size=32)
# Predictions
predictions = predict_stock_price(model, new_dataloader)
# Convert predictions to percentage change
# Average out every two adjacent values in the list
averaged_predictions = [(predictions[i] + predictions[i+1]) / 2 for i in range(0, len(predictions)-1, 2)]
averaged_predictions.append(predictions[-1])
# Store the averaged predictions in the same list
predicted_percentage_change = averaged_predictions
# Get actual percentage change from the CSV file
actual_percentage_change = new_data['percentage_change'].values[::2]
# Predictions for tomorrow
tomorrow_date = datetime.now() + timedelta(days=1)
tomorrow_prediction = predictions[-1]
print(tomorrow_date)
import subprocess
# Function to run cdb2.py script
def run_cdb2_script():
try:
# Run the cdb2.py script using subprocess
subprocess.run(["python", "CurrentDB.py"])
st.write("Please wait a moment, updating current")
except Exception as e:
st.error(f"An error occurred while running the cdb2.py script: {e}")
# Add a button to run the cdb2.py script
if st.button("Fetch Latest Data"):
run_cdb2_script()
# Plotting
fig, ax = plt.subplots(figsize=(12, 8))
# Plot actual vs predicted percentage change
ax.plot(new_data['stock_date'][::2][:-1], actual_percentage_change[:-1], label='Actual Percentage Change', marker='o', linestyle='-')
# Plot predicted percentage change if available
if predicted_percentage_change:
ax.plot(new_data['stock_date'][::2], predicted_percentage_change, label='Predicted Percentage Change', marker='x', linestyle='--')
# Plot tomorrow's prediction
ax.plot(tomorrow_date, tomorrow_prediction, label='Tomorrow Prediction', marker='*', linestyle='--')
# Draw a dotted green line from the last predicted percentage change to tomorrow's prediction if predictions are available
if predicted_percentage_change:
last_predicted_date = new_data['stock_date'].iloc[-1]
last_predicted_change = predicted_percentage_change[-1]
ax.plot([last_predicted_date, tomorrow_date], [last_predicted_change, tomorrow_prediction], 'g--')
# Formatting
ax.set_xlabel('Date')
ax.set_ylabel('Percentage Change')
ax.set_title('Comparison of Actual vs Predicted Percentage Change')
ax.legend()
ax.grid(True)
plt.xticks(rotation=45)
# Streamlit app
st.title('Comparison of Actual vs Predicted Percentage Change')
st.pyplot(fig)
|