File size: 5,327 Bytes
16152ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import pandas as pd
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
from transformers import BertTokenizer, BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error
import os
from datetime import datetime

# Load the CSV file for training
data = pd.read_csv("Database/META_db.csv")  # Provide path to your training dataset

# Drop rows with missing or empty sentiment data
data.dropna(subset=['Sentiment Polarity', 'Sentiment Confidence', 'stock_price', 'percentage_change'], inplace=True)

if data.empty:
    print("No valid data found in the dataset.")
    exit()

# Convert 'Sentiment Polarity' to numerical representation
data['Sentiment Polarity'] = data['Sentiment Polarity'].map({'neutral': 0, 'positive': 1, 'negative': -1})

# Convert 'Publication Date' and 'stock_date' to datetime objects
data['Publication Date'] = pd.to_datetime(data['Publication Date'])
data['stock_date'] = pd.to_datetime(data['stock_date'])

# Use only required columns
data = data[['Publication Date', 'Sentiment Polarity', 'Sentiment Confidence', 'Keywords', 'stock_date', 'stock_price', 'percentage_change']]

# Split the dataset into train and test sets
train_data, eval_data = train_test_split(data, random_state=42, test_size=0.3)

# Prepare inputs and labels
train_features = train_data[['Publication Date', 'Sentiment Polarity', 'Sentiment Confidence', 'Keywords', 'stock_date']]
train_labels = torch.tensor(train_data['percentage_change'].values, dtype=torch.float32)

eval_features = eval_data[['Publication Date', 'Sentiment Polarity', 'Sentiment Confidence', 'Keywords', 'stock_date']]
eval_labels = torch.tensor(eval_data['percentage_change'].values, dtype=torch.float32)

# Create DataLoaders
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

class CustomDataset(torch.utils.data.Dataset):
    def __init__(self, features, labels, tokenizer, max_length=512):
        self.features = features
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_length = max_length

    def __len__(self):
        return len(self.features)

    def __getitem__(self, idx):
        feature = self.features.iloc[idx]
        text = f"Publication Date: {feature['Publication Date']}, Sentiment Polarity: {feature['Sentiment Polarity']}, Sentiment Confidence: {feature['Sentiment Confidence']}, Keywords: {feature['Keywords']}, Stock Date: {feature['stock_date']}"
        inputs = self.tokenizer.encode_plus(
            text,
            add_special_tokens=True,
            max_length=self.max_length,
            padding='max_length',
            return_token_type_ids=False,
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt'
        )
        label = self.labels[idx]
        return inputs, label

train_dataset = CustomDataset(train_features, train_labels, tokenizer)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=20)

eval_dataset = CustomDataset(eval_features, eval_labels, tokenizer)
eval_dataloader = DataLoader(eval_dataset, batch_size=20)

# Fine-tune BERT model
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=1)
device = torch.device("cuda")
model.to(device)

optimizer = AdamW(model.parameters(), lr=2e-5, eps=1e-8)
epochs = 20
total_steps = len(train_dataloader) * epochs
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)

# Inside the training loop:
for epoch in range(epochs):
    model.train()
    total_train_loss = 0
    for step, (batch_inputs, batch_labels) in enumerate(train_dataloader):
        batch_inputs = {key: val.squeeze(1).to(device) for key, val in batch_inputs.items()}
        batch_labels = batch_labels.to(device)
        
        optimizer.zero_grad()
        outputs = model(**batch_inputs, labels=batch_labels)
        loss = outputs.loss
        total_train_loss += loss.item()
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()
        scheduler.step()

    avg_train_loss = total_train_loss / len(train_dataloader)
    print(f"Epoch {epoch+1}/{epochs}")
    print(f"Average training loss: {avg_train_loss}")

# Evaluation
model.eval()
total_eval_loss = 0
predictions, true_labels = [], []

for batch_inputs, batch_labels in eval_dataloader:
    batch_inputs = {key: val.squeeze(1).to(device) for key, val in batch_inputs.items()}
    batch_labels = batch_labels.to(device)
    
    with torch.no_grad():
        outputs = model(**batch_inputs, labels=batch_labels)
    loss = outputs.loss
    logits = outputs.logits
    total_eval_loss += loss.item()
    predictions.extend(logits.flatten().cpu().detach().numpy())
    true_labels.extend(batch_labels.cpu().detach().numpy())

avg_eval_loss = total_eval_loss / len(eval_dataloader)
print(f"Average evaluation loss: {avg_eval_loss}")

# Calculate MAE
mae = mean_absolute_error(true_labels, predictions)
print(f"Mean Absolute Error: {mae}")

# Save the trained model
output_dir = './saved_model_META/'
if not os.path.exists(output_dir):
    os.makedirs(output_dir)
model.save_pretrained(output_dir)

print("Model saved successfully.")