abdouramandalil commited on
Commit
7b74438
·
verified ·
1 Parent(s): d502d8d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -0
app.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ import seaborn as sns
6
+ import time
7
+
8
+ df = pd.read_csv('bank.csv')
9
+ st.set_page_config(page_title='Real time dashboard',
10
+ page_icon = '✅',layout="wide")
11
+
12
+ #DASHBOARD TITLE
13
+ st.title('Real time dashbord analysis')
14
+ #filtre sur le type de job
15
+ job_filter = st.selectbox('select a job',pd.unique(df['job']))
16
+ df = df[df['job']== job_filter]
17
+
18
+ #Creation d indicateurs
19
+ avg_age = np.mean(df['age'])
20
+ count_married = int(df[(df['marital'] == 'married')]['marital'].count())
21
+ balance = np.mean(df['balance'])
22
+
23
+ kpi1,kpi2,kpi3= st.columns(3)
24
+ kpi1.metric(label='Age ⏳',value=round(avg_age),delta=round(avg_age))
25
+ kpi2.metric(label='Married Count 💍', value=count_married,
26
+ delta= round(count_married))
27
+ kpi3.metric(label='Balance $',value=f'$ {round(balance,2)}',
28
+ delta = round(balance/count_married)*100)
29
+ #Graphiques
30
+ col1,col2 = st.columns(2)
31
+ with col1:
32
+ st.markdown('### First chart')
33
+ fig1 = plt.figure()
34
+ sns.barplot(data=df,x='marital',y='age',palette='muted')
35
+ st.pyplot(fig1)
36
+ with col2:
37
+ st.markdown('### Second chart')
38
+ fig2 = plt.figure()
39
+ sns.histplot(data=df,x='age',palette='muted')
40
+ st.pyplot(fig2)
41
+ st.markdown('### Detailed data view')
42
+ st.dataframe(df)
43
+
44
+
45
+