Btr4k commited on
Commit
f77f85c
·
1 Parent(s): 9a15f21

Initial commit: Phishing detector

Browse files
Files changed (3) hide show
  1. README.md +37 -13
  2. app.py +205 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,13 +1,37 @@
1
- ---
2
- title: PhishGuard
3
- emoji: 👀
4
- colorFrom: red
5
- colorTo: yellow
6
- sdk: gradio
7
- sdk_version: 5.16.1
8
- app_file: app.py
9
- pinned: false
10
- short_description: A zero-shot classification tool that detects and flags poten
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 📧 Phishing Detector (Text + Screenshot)
2
+
3
+ This Hugging Face Space provides an interface to analyze emails and SMS messages for potential phishing attempts. It accepts both direct text input and screenshots, using OCR to extract text from images when needed.
4
+
5
+ ## Features
6
+
7
+ - Support for both text input and screenshot upload
8
+ - OCR for processing screenshots (microsoft/trocr-base-printed)
9
+ - Zero-shot classification to detect phishing patterns
10
+ - Keyword analysis for common phishing indicators
11
+ - Confidence scores for classifications
12
+ - Detailed explanations of suspicious elements
13
+ - Example messages for demonstration
14
+
15
+ ## How to Use
16
+
17
+ 1. Either:
18
+ - Paste your message text into the input box, OR
19
+ - Upload a screenshot of the message
20
+ 2. Click "Submit" to analyze
21
+ 3. Review the classification and explanation
22
+
23
+ ## Technical Details
24
+
25
+ - Uses microsoft/trocr-base-printed for OCR
26
+ - Uses facebook/bart-large-mnli for zero-shot classification
27
+ - Implements keyword-based heuristics
28
+ - Built with Gradio for the user interface
29
+ - No fine-tuning required
30
+
31
+ ## Disclaimer
32
+
33
+ This is an educational demo and should not be used as your only method of detecting phishing attempts. Always exercise caution with suspicious messages and follow your organization's security guidelines.
34
+
35
+ ## License
36
+
37
+ MIT License
app.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Initialize pipelines
5
+ ocr = pipeline("image-to-text", model="microsoft/trocr-base-printed")
6
+ classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
7
+
8
+ # Common phishing indicators
9
+ SUSPICIOUS_PHRASES = [
10
+ "urgent", "immediately", "password", "account locked", "wire transfer",
11
+ "bank verification", "click here", "verification code", "credit card",
12
+ "suspended", "login now", "reset your password", "act now", "unusual activity",
13
+ "security alert", "confirm your identity", "gift card", "lottery winner",
14
+ "inheritance", "tax refund", "payment pending"
15
+ ]
16
+
17
+ def extract_text_from_image(image):
18
+ """Extract text from uploaded image using OCR."""
19
+ if image is None:
20
+ return ""
21
+ try:
22
+ result = ocr(image)
23
+ return result[0]["generated_text"] if result else ""
24
+ except Exception as e:
25
+ return f"Error processing image: {str(e)}"
26
+
27
+ def analyze_text(text):
28
+ """Analyze text for phishing indicators."""
29
+ if not text.strip():
30
+ return "No text to analyze.", "", gr.update(visible=False)
31
+
32
+ # Zero-shot Classification
33
+ candidate_labels = ["Phishing Email", "Legitimate Email"]
34
+ result = classifier(text, candidate_labels=candidate_labels)
35
+
36
+ label = result["labels"][0]
37
+ confidence = result["scores"][0]
38
+
39
+ # Determine alert level and color
40
+ if label == "Phishing Email":
41
+ if confidence > 0.8:
42
+ alert_html = """
43
+ <div style="padding: 15px; background-color: #ffebee; border-left: 6px solid #f44336; margin-bottom: 15px;">
44
+ <h3 style="color: #d32f2f; margin: 0;">⚠️ High Risk - Likely Phishing Attempt</h3>
45
+ </div>
46
+ """
47
+ else:
48
+ alert_html = """
49
+ <div style="padding: 15px; background-color: #fff3e0; border-left: 6px solid #ff9800; margin-bottom: 15px;">
50
+ <h3 style="color: #f57c00; margin: 0;">⚠️ Medium Risk - Suspicious Content Detected</h3>
51
+ </div>
52
+ """
53
+ else:
54
+ alert_html = """
55
+ <div style="padding: 15px; background-color: #e8f5e9; border-left: 6px solid #4caf50; margin-bottom: 15px;">
56
+ <h3 style="color: #2e7d32; margin: 0;">✅ Low Risk - Likely Legitimate</h3>
57
+ </div>
58
+ """
59
+
60
+ # Keyword Analysis
61
+ found_phrases = []
62
+ text_lower = text.lower()
63
+ for phrase in SUSPICIOUS_PHRASES:
64
+ if phrase in text_lower:
65
+ found_phrases.append(phrase)
66
+
67
+ # Generate Detailed Report
68
+ report = [
69
+ f"### Analysis Results",
70
+ f"**Confidence Score:** {confidence:.1%}",
71
+ f"**Classification:** {label}",
72
+ "\n### Detected Indicators"
73
+ ]
74
+
75
+ if found_phrases:
76
+ report.append("🚩 **Suspicious elements found:**")
77
+ for phrase in found_phrases:
78
+ report.append(f"- Found '{phrase}'")
79
+ else:
80
+ report.append("✅ No common suspicious phrases detected.")
81
+
82
+ report.append("\n### Recommendation")
83
+ if confidence > 0.9:
84
+ report.append("🔴 **High confidence in classification - exercise extreme caution!**")
85
+ elif confidence > 0.7:
86
+ report.append("🟡 **Moderate confidence - review carefully and verify sender.**")
87
+ else:
88
+ report.append("🟢 **Low confidence - but always remain vigilant.**")
89
+
90
+ return alert_html, "\n".join(report), gr.update(visible=True)
91
+
92
+ def process_input(text_input, image_input):
93
+ """Process either text input or image input."""
94
+ # If text is provided, use it directly
95
+ if text_input.strip():
96
+ return analyze_text(text_input)
97
+
98
+ # If image is provided, extract text first
99
+ if image_input is not None:
100
+ extracted_text = extract_text_from_image(image_input)
101
+ if extracted_text.strip():
102
+ return analyze_text(extracted_text)
103
+ return (
104
+ """<div style="padding: 15px; background-color: #fff3e0; border-left: 6px solid #ff9800; margin-bottom: 15px;">
105
+ <h3 style="color: #f57c00; margin: 0;">⚠️ OCR Processing Error</h3>
106
+ </div>""",
107
+ "Could not extract text from image. Please ensure the image contains clear, readable text.",
108
+ gr.update(visible=False)
109
+ )
110
+
111
+ return (
112
+ "",
113
+ "Please provide either text or an image to analyze.",
114
+ gr.update(visible=False)
115
+ )
116
+
117
+ # Custom theme
118
+ custom_theme = gr.themes.Soft().set(
119
+ body_background_fill='*background-1',
120
+ block_background_fill='*background-2',
121
+ block_label_background_fill='*background-3',
122
+ input_background_fill='*background-2',
123
+ button_primary_background_fill='*primary-500',
124
+ button_primary_text_color='white',
125
+ )
126
+
127
+ # Create Gradio interface with tabs
128
+ with gr.Blocks(theme=custom_theme) as demo:
129
+ gr.Markdown("""
130
+ # 📧 AI Phishing Detector
131
+ ### Analyze emails and messages for potential phishing attempts
132
+ Upload a screenshot or paste text to check for suspicious content
133
+ """)
134
+
135
+ with gr.Row():
136
+ with gr.Column(scale=1):
137
+ gr.Markdown("""
138
+ ### How to Use
139
+ 1. Either paste message text or upload a screenshot
140
+ 2. Click 'Analyze' to check for phishing indicators
141
+ 3. Review the detailed analysis results
142
+
143
+ ℹ️ This tool uses AI to detect:
144
+ - Suspicious language patterns
145
+ - Common phishing phrases
146
+ - Urgency indicators
147
+ - Security threat language
148
+ """)
149
+
150
+ with gr.Column(scale=2):
151
+ with gr.Tab("✏️ Text Input"):
152
+ text_input = gr.Textbox(
153
+ lines=8,
154
+ label="Message Text",
155
+ placeholder="Paste email or message content here...",
156
+ elem_id="text_input"
157
+ )
158
+
159
+ with gr.Tab("📷 Screenshot Upload"):
160
+ image_input = gr.Image(
161
+ label="Upload Screenshot",
162
+ type="pil",
163
+ elem_id="image_input"
164
+ )
165
+
166
+ analyze_button = gr.Button("🔍 Analyze", variant="primary", size="lg")
167
+
168
+ with gr.Row():
169
+ with gr.Column():
170
+ alert_html = gr.HTML(label="Alert")
171
+ analysis = gr.Markdown(label="Detailed Analysis")
172
+
173
+ with gr.Accordion("ℹ️ About this tool", open=False):
174
+ gr.Markdown("""
175
+ This tool uses advanced AI models to analyze messages for potential phishing attempts:
176
+ - OCR technology to extract text from screenshots
177
+ - Zero-shot classification for pattern detection
178
+ - Keyword analysis for suspicious content
179
+
180
+ **Disclaimer:** This is an educational demo. Always verify suspicious messages with your IT department.
181
+ """)
182
+
183
+ # Examples
184
+ examples = [
185
+ ["Subject: URGENT - Account Security Alert\n\nDear User,\n\nWe detected unusual activity in your account. Click here immediately to verify your identity and reset your password. If you don't respond within 24 hours, your account will be suspended.\n\nBank Security Team", None],
186
+ ["Subject: Team Meeting Tomorrow\n\nHi everyone,\n\nJust a reminder that we have our weekly team meeting tomorrow at 10 AM in the main conference room. Please bring your project updates.\n\nBest regards,\nSarah", None],
187
+ ]
188
+ gr.Examples(
189
+ examples=examples,
190
+ inputs=[text_input, image_input],
191
+ outputs=[alert_html, analysis],
192
+ fn=process_input,
193
+ cache_examples=True
194
+ )
195
+
196
+ # Set up event handler
197
+ analyze_button.click(
198
+ fn=process_input,
199
+ inputs=[text_input, image_input],
200
+ outputs=[alert_html, analysis]
201
+ )
202
+
203
+ # Launch the app
204
+ if __name__ == "__main__":
205
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio>=3.0
2
+ transformers>=4.25
3
+ torch