File size: 22,716 Bytes
3b6960a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import gradio as gr
import spaces
import json
import datetime
import random
from transformers import pipeline
import torch
import time

# Custom CSS for better styling
custom_css = """
.gradio-container {
    max-width: 1200px !important;
}
.alert-box {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    color: white;
    padding: 20px;
    border-radius: 10px;
    margin: 10px 0;
}
.status-success {
    background: #d4edda;
    border: 1px solid #c3e6cb;
    color: #155724;
    padding: 10px;
    border-radius: 5px;
}
.status-warning {
    background: #fff3cd;
    border: 1px solid #ffeaa7;
    color: #856404;
    padding: 10px;
    border-radius: 5px;
}
"""

# Initialize the LLM pipeline with zeroGPU support
@spaces.GPU
def initialize_llm():
    try:
        # Check GPU availability
        device = "cuda" if torch.cuda.is_available() else "cpu"
        print(f"Using device: {device}")
        
        # Try to use a larger model with GPU acceleration
        model_id = "microsoft/DialoGPT-medium"
        pipe = pipeline(
            "text-generation",
            model=model_id,
            torch_dtype=torch.float16 if device == "cuda" else torch.float32,
            device_map="auto" if device == "cuda" else "cpu",
            max_length=512,
            pad_token_id=50256
        )
        return pipe, f"✅ LLM Model loaded on {device}: {model_id}"
    except Exception as e:
        return None, f"⚠️ LLM not available: {str(e)[:100]}... Using fallback analysis."

pipe, model_status = initialize_llm()

# Enhanced attack scenarios with more realistic data
ATTACK_SCENARIOS = {
    "🔄 Lateral Movement": {
        "description": "Advanced Persistent Threat (APT) - Attacker moving laterally through network after initial compromise",
        "severity": "Critical",
        "alerts": [
            {
                "id": "ALR-001",
                "timestamp": "2025-01-15 14:30:45",
                "source_ip": "192.168.1.100",
                "destination_ip": "192.168.1.25", 
                "user": "corp\\john.doe",
                "alert_type": "Suspicious Process Execution",
                "severity": "High",
                "description": "Unusual PowerShell execution with encoded commands detected",
                "raw_log": "Process: powershell.exe -WindowStyle Hidden -enc ZXhlYyBjYWxjLmV4ZQ== Parent: winword.exe",
                "threat_intel": "Base64 encoded PowerShell commonly used by APT29 (Cozy Bear) for initial access",
                "mitre_tactic": "T1059.001 - PowerShell",
                "confidence": 85
            },
            {
                "id": "ALR-002", 
                "timestamp": "2025-01-15 14:35:12",
                "source_ip": "192.168.1.100",
                "destination_ip": "192.168.1.50",
                "user": "corp\\john.doe",
                "alert_type": "Credential Dumping Attempt",
                "severity": "Critical",
                "description": "LSASS memory access detected - possible credential harvesting",
                "raw_log": "Process: rundll32.exe comsvcs.dll MiniDump [PID] lsass.dmp full",
                "threat_intel": "LSASS dumping technique associated with credential theft operations",
                "mitre_tactic": "T1003.001 - LSASS Memory",
                "confidence": 92
            },
            {
                "id": "ALR-003",
                "timestamp": "2025-01-15 14:42:18", 
                "source_ip": "192.168.1.100",
                "destination_ip": "10.0.0.15",
                "user": "SYSTEM",
                "alert_type": "Abnormal Network Connection",
                "severity": "Medium", 
                "description": "Connection to unusual internal subnet using stolen credentials",
                "raw_log": "TCP connection established to 10.0.0.15:445 from 192.168.1.100:51234",
                "threat_intel": "SMB connections to sensitive subnets often indicate lateral movement",
                "mitre_tactic": "T1021.002 - SMB/Windows Admin Shares",
                "confidence": 78
            }
        ]
    },
    "📧 Phishing Campaign": {
        "description": "Email-based social engineering attack leading to credential theft and data exfiltration",
        "severity": "High",
        "alerts": [
            {
                "id": "ALR-004",
                "timestamp": "2025-01-15 09:15:30",
                "source_ip": "203.0.113.50",
                "destination_ip": "192.168.1.75",
                "user": "corp\\sarah.wilson",
                "alert_type": "Malicious Email Detected", 
                "severity": "High",
                "description": "Suspicious email with credential harvesting link detected",
                "raw_log": "From: [email protected] Subject: URGENT: Account Suspended - Verify Now",
                "threat_intel": "Domain registered 48 hours ago, hosted on bulletproof hosting provider",
                "mitre_tactic": "T1566.002 - Spearphishing Link",
                "confidence": 88
            },
            {
                "id": "ALR-005",
                "timestamp": "2025-01-15 09:45:22",
                "source_ip": "192.168.1.75", 
                "destination_ip": "203.0.113.50",
                "user": "corp\\sarah.wilson",
                "alert_type": "Credential Submission",
                "severity": "Critical",
                "description": "User credentials submitted to suspicious external site",
                "raw_log": "HTTPS POST to https://203.0.113.50/login.php - Credentials: username=sarah.wilson&password=[REDACTED]",
                "threat_intel": "IP address hosting multiple phishing kits targeting financial institutions",
                "mitre_tactic": "T1056.003 - Web Portal Capture",
                "confidence": 95
            }
        ]
    },
    "🔒 Ransomware Attack": {
        "description": "File encryption attack with ransom demand - likely REvil/Sodinokibi variant",
        "severity": "Critical",
        "alerts": [
            {
                "id": "ALR-006",
                "timestamp": "2025-01-15 16:20:10",
                "source_ip": "192.168.1.85",
                "destination_ip": "192.168.1.85",
                "user": "corp\\admin.backup",
                "alert_type": "Mass File Encryption",
                "severity": "Critical", 
                "description": "Rapid file modifications detected across multiple directories",
                "raw_log": "Files encrypted: 1,247 in C:\\Users\\Documents\\ Extensions changed to: .locked2025",
                "threat_intel": "Encryption pattern and extension match REvil ransomware family signatures",
                "mitre_tactic": "T1486 - Data Encrypted for Impact",
                "confidence": 97
            },
            {
                "id": "ALR-007",
                "timestamp": "2025-01-15 16:25:33",
                "source_ip": "192.168.1.85",
                "destination_ip": "45.33.22.11", 
                "user": "SYSTEM",
                "alert_type": "Command and Control Communication",
                "severity": "High",
                "description": "Encrypted communication to known ransomware C2 infrastructure",
                "raw_log": "TLS 1.3 connection established to 45.33.22.11:8443 - Data exchanged: 2.3KB",
                "threat_intel": "IP address previously associated with REvil ransomware C2 operations",
                "mitre_tactic": "T1071.001 - Web Protocols",
                "confidence": 91
            }
        ]
    }
}

@spaces.GPU
def generate_advanced_llm_analysis(alert_data, analyst_level):
    """Generate comprehensive LLM-based analysis with enhanced prompting and GPU acceleration"""
    
    # Enhanced context with more structured prompting
    system_context = f"""You are an expert cybersecurity analyst assistant specializing in SOC operations. 
    Analyze the following security alert for a Level {analyst_level} analyst.

    ALERT CONTEXT:
    ID: {alert_data['id']}
    Type: {alert_data['alert_type']} 
    Severity: {alert_data['severity']}
    Timestamp: {alert_data['timestamp']}
    Network: {alert_data['source_ip']}{alert_data['destination_ip']}
    User: {alert_data['user']}
    Description: {alert_data['description']}
    Technical Details: {alert_data['raw_log']}
    Threat Intelligence: {alert_data['threat_intel']}
    MITRE ATT&CK: {alert_data['mitre_tactic']}
    Confidence: {alert_data['confidence']}%

    Provide analysis appropriate for {analyst_level} level:"""

    if pipe:
        try:
            # Use GPU acceleration for faster inference
            device = next(pipe.model.parameters()).device
            print(f"LLM running on device: {device}")
            
            prompt = f"{system_context}\n\nAnalysis:"
            response = pipe(
                prompt, 
                max_new_tokens=300, 
                do_sample=True, 
                temperature=0.7, 
                top_p=0.9,
                pad_token_id=pipe.tokenizer.eos_token_id
            )
            generated_text = response[0]['generated_text']
            analysis = generated_text[len(prompt):].strip()
            return analysis if analysis else get_fallback_analysis(alert_data, analyst_level)
        except Exception as e:
            print(f"LLM Error: {e}")
            return f"LLM Processing Error: {str(e)}\n\n{get_fallback_analysis(alert_data, analyst_level)}"
    
    return get_fallback_analysis(alert_data, analyst_level)

def get_fallback_analysis(alert_data, analyst_level):
    """Enhanced fallback analysis with detailed recommendations"""
    
    base_analysis = {
        "L1": {
            "icon": "🚨",
            "title": "L1 TRIAGE ANALYSIS",
            "focus": "Initial Assessment & Escalation",
            "template": """
{icon} {title}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
🎯 THREAT SUMMARY: {alert_type} - {severity} severity
⏰ OCCURRED: {timestamp}
🌐 AFFECTED SYSTEM: {source_ip} (User: {user})
🔍 CONFIDENCE LEVEL: {confidence}%

🚀 IMMEDIATE ACTIONS:
• Isolate affected system: {source_ip}
• Verify user account status: {user}
• Check for similar alerts in timeframe
• Document incident ID: {id}

⬆️ ESCALATION CRITERIA: 
• Severity: {severity} - Meets L2 escalation threshold
• MITRE Tactic: {mitre_tactic}
• Recommend immediate L2 review

📋 INITIAL NOTES:
{threat_intel}
            """
        },
        "L2": {
            "icon": "🔍", 
            "title": "L2 INVESTIGATION ANALYSIS",
            "focus": "Detailed Investigation & Correlation",
            "template": """
{icon} {title}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
🎯 ATTACK VECTOR: {description}
⚙️ TECHNICAL DETAILS: {raw_log}
🧠 THREAT CONTEXT: {threat_intel}
🎪 MITRE ATT&CK: {mitre_tactic}

🔬 INVESTIGATION STEPS:
1. Examine parent process tree for {source_ip}
2. Correlate network connections in ±30min window  
3. Review authentication logs for user: {user}
4. Check for indicators across environment
5. Analyze file system changes (if applicable)

🎯 CORRELATION POINTS:
• Source IP timeline analysis
• User behavior baseline comparison
• Similar TTPs in recent incidents
• Network segmentation verification

📊 RISK ASSESSMENT:
• Technical Impact: {severity}
• Business Risk: Review asset criticality
• Containment Priority: High (based on {confidence}% confidence)

⬆️ L3 ESCALATION IF:
• Attack campaign indicators found
• Critical asset involvement confirmed
• Advanced persistent threat suspected
            """
        },
        "L3": {
            "icon": "🎯",
            "title": "L3 EXPERT ANALYSIS", 
            "focus": "Attribution & Strategic Response",
            "template": """
{icon} {title}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
🎭 ADVERSARY PROFILE: Advanced threat actor
🎪 CAMPAIGN ANALYSIS: {threat_intel}
💼 BUSINESS IMPACT: {severity} - Requires C-level awareness
🛡️ DEFENSIVE POSTURE: Enhanced monitoring required

🕵️ THREAT HUNTING PRIORITIES:
1. Memory forensics on {source_ip}
2. Network traffic deep packet inspection
3. Endpoint artifact preservation
4. Active Directory security log analysis
5. Cloud infrastructure review (if applicable)

🎯 ATTRIBUTION INDICATORS:
• TTPs match: {mitre_tactic}
• Technical sophistication: High
• Targeting pattern: [Analyze organizational profile]
• Infrastructure overlap: Review IOC databases

🛠️ MITIGATION STRATEGY:
• Immediate: Block C2 communications
• Short-term: Deploy hunting queries 
• Medium-term: Security architecture review
• Long-term: Staff training and awareness

📈 EXECUTIVE BRIEFING POINTS:
• Sophisticated attack requiring coordinated response
• Potential for lateral movement and data exfiltration
• Recommend incident response team activation
• Consider external forensics support

🔮 PREDICTIVE ANALYSIS:
• High probability of follow-up attacks
• Recommend 48-72 hour enhanced monitoring
• Consider threat landscape implications
            """
        }
    }
    
    if analyst_level in base_analysis:
        template = base_analysis[analyst_level]["template"]
        return template.format(
            icon=base_analysis[analyst_level]["icon"],
            title=base_analysis[analyst_level]["title"],
            **alert_data
        )
    
    return "Analysis not available for specified level."

def analyze_alert_comprehensive(scenario_name, alert_index, analyst_level):
    """Enhanced main analysis function with timing and status updates"""
    start_time = time.time()
    
    # Validate inputs
    if scenario_name not in ATTACK_SCENARIOS:
        return "❌ Invalid scenario selected.", "", "Error: Invalid scenario"
    
    scenario = ATTACK_SCENARIOS[scenario_name]
    alerts = scenario["alerts"]
    
    if alert_index >= len(alerts):
        return "❌ Invalid alert index.", "", "Error: Invalid alert index"
    
    selected_alert = alerts[alert_index]
    
    # Generate comprehensive analysis
    analysis = generate_advanced_llm_analysis(selected_alert, analyst_level)
    
    # Enhanced alert details formatting
    alert_details = f"""
🎫 ALERT ID: {selected_alert['id']} | 🕐 {selected_alert['timestamp']}
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

🌐 NETWORK FLOW:
   Source: {selected_alert['source_ip']} → Destination: {selected_alert['destination_ip']}
   
👤 USER CONTEXT:
   Account: {selected_alert['user']}
   
⚠️ ALERT CLASSIFICATION:
   Type: {selected_alert['alert_type']}
   Severity: {selected_alert['severity']}
   Confidence: {selected_alert['confidence']}%
   
📝 DESCRIPTION:
   {selected_alert['description']}
   
🔍 TECHNICAL EVIDENCE:
   {selected_alert['raw_log']}
   
🧠 THREAT INTELLIGENCE:
   {selected_alert['threat_intel']}
   
🎪 MITRE ATT&CK MAPPING:
   {selected_alert['mitre_tactic']}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    """
    
    processing_time = round(time.time() - start_time, 2)
    status_message = f"✅ {analyst_level} analysis completed in {processing_time}s | Model: {model_status}"
    
    return alert_details, analysis, status_message

def get_enhanced_scenario_info(scenario_name):
    """Enhanced scenario information with threat overview"""
    if scenario_name in ATTACK_SCENARIOS:
        scenario = ATTACK_SCENARIOS[scenario_name]
        
        info = f"""
## 🎭 **Attack Scenario: {scenario_name}**

**📋 Description:** {scenario['description']}
**⚠️ Severity Level:** {scenario['severity']}
**📊 Total Alerts:** {len(scenario['alerts'])} security events detected

### 🔍 **Alert Timeline:**
"""
        
        for i, alert in enumerate(scenario['alerts']):
            info += f"""
**[{i+1}] {alert['timestamp']}** - {alert['alert_type']}
   └─ Severity: {alert['severity']} | Confidence: {alert['confidence']}%
"""
        
        info += f"""
### 🎯 **Analysis Capabilities:**
- **L1 Triage:** Initial assessment and escalation decisions
- **L2 Investigation:** Detailed technical analysis and correlation  
- **L3 Expert:** Attribution, impact assessment, and strategic response
        """
        
        return info
    return "⚠️ No scenario selected. Please choose an attack scenario to begin analysis."

# Create enhanced Gradio interface
with gr.Blocks(title="SOC LLM Assistant - Advanced PoC", theme=gr.themes.Soft(), css=custom_css) as demo:
    
    # Header
    gr.Markdown("""
    # 🛡️ SOC LLM Assistant - Advanced Proof of Concept
    **Intelligent Security Alert Analysis for Multi-Level SOC Operations**
    
    *Demonstrating LLM-powered assistance for L1, L2, and L3 security analysts*
    """)
    
    # Model status display
    gr.Markdown(f"🤖 **System Status:** {model_status}")
    
    with gr.Row():
        # Left Panel - Controls
        with gr.Column(scale=1, min_width=300):
            gr.Markdown("## 🎮 Attack Simulation Control")
            
            scenario_dropdown = gr.Dropdown(
                choices=list(ATTACK_SCENARIOS.keys()),
                label="🎭 Select Attack Scenario",
                value="🔄 Lateral Movement",
                interactive=True
            )
            
            scenario_info = gr.Markdown()
            
            gr.Markdown("---")
            gr.Markdown("## ⚙️ Analysis Configuration")
            
            alert_slider = gr.Slider(
                minimum=0,
                maximum=2,
                step=1,
                value=0,
                label="📋 Alert Selection",
                info="Choose which alert from the scenario to analyze"
            )
            
            analyst_level = gr.Radio(
                choices=["L1", "L2", "L3"],
                label="👤 Analyst Level",
                value="L2",
                info="L1: Triage | L2: Investigation | L3: Expert Analysis"
            )
            
            analyze_btn = gr.Button(
                "🔍 Analyze Alert", 
                variant="primary",
                size="lg"
            )
            
            gr.Markdown("---")
            gr.Markdown("## 📊 Quick Stats")
            gr.Markdown("""
            **🎯 Demo Features:**
            - 3 realistic attack scenarios
            - Multi-level analysis (L1/L2/L3)
            - MITRE ATT&CK mapping
            - Threat intelligence integration
            - Real-time LLM processing
            """)
        
        # Right Panel - Results
        with gr.Column(scale=2):
            gr.Markdown("## 📋 Security Alert Details")
            alert_output = gr.Textbox(
                label="🎫 Raw Alert Information",
                lines=15,
                interactive=False,
                placeholder="Alert details will appear here after analysis..."
            )
            
            gr.Markdown("## 🤖 AI-Powered Analysis")
            analysis_output = gr.Textbox(
                label="🧠 Intelligent Analysis & Recommendations",
                lines=20,
                interactive=False,
                placeholder="LLM analysis will appear here after processing..."
            )
            
            status_output = gr.Textbox(
                label="📊 Processing Status", 
                interactive=False,
                lines=1
            )
    
    # Footer information
    gr.Markdown("""
    ---
    ## 📖 **Usage Instructions:**
    
    1. **📊 Select Scenario:** Choose from realistic cybersecurity attack scenarios
    2. **🎯 Pick Alert:** Use the slider to select which alert in the sequence to analyze  
    3. **👤 Choose Level:** Select analyst expertise level (L1/L2/L3) for tailored analysis
    4. **🔍 Analyze:** Click the analyze button to get AI-powered insights and recommendations
    
    ## 🎯 **Key Capabilities Demonstrated:**
    
    - **🎭 Realistic Scenarios:** Based on actual cybersecurity incidents and attack patterns
    - **🧠 Contextual Analysis:** LLM considers all available metadata, threat intelligence, and historical patterns
    - **👥 Role-Based Insights:** Tailored recommendations for different SOC analyst skill levels
    - **⚡ Real-Time Processing:** Immediate analysis with actionable next steps
    - **🎪 Industry Standards:** MITRE ATT&CK framework integration for standardized threat classification
    
    ## 🔬 **Research Value:**
    This PoC demonstrates the feasibility of LLM integration in operational security environments, supporting research in automated threat analysis, human-AI collaboration, and intelligent SOC operations.
    
    ---
    **👨‍🎓 Developed by:** Abdullah Alanazi | **🏛️ Institution:** KAUST | **👨‍🏫 Supervisor:** Prof. Ali Shoker
    """)
    
    # Event handlers with enhanced functionality
    scenario_dropdown.change(
        fn=get_enhanced_scenario_info,
        inputs=[scenario_dropdown],
        outputs=[scenario_info]
    )
    
    # Update slider maximum based on scenario
    def update_slider_max(scenario_name):
        if scenario_name in ATTACK_SCENARIOS:
            max_alerts = len(ATTACK_SCENARIOS[scenario_name]["alerts"]) - 1
            return gr.Slider(maximum=max_alerts, value=0)
        return gr.Slider(maximum=2, value=0)
    
    scenario_dropdown.change(
        fn=update_slider_max,
        inputs=[scenario_dropdown], 
        outputs=[alert_slider]
    )
    
    analyze_btn.click(
        fn=analyze_alert_comprehensive,
        inputs=[scenario_dropdown, alert_slider, analyst_level],
        outputs=[alert_output, analysis_output, status_output]
    )
    
    # Initialize with default scenario
    demo.load(
        fn=get_enhanced_scenario_info,
        inputs=[scenario_dropdown],
        outputs=[scenario_info]
    )

# Launch configuration
if __name__ == "__main__":
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )