Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,24 +11,353 @@ import warnings
|
|
11 |
# Suppress warnings for cleaner output
|
12 |
warnings.filterwarnings("ignore")
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
.gradio-container {
|
17 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
.gpt-oss-badge {
|
20 |
-
background: linear-gradient(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
color: white;
|
22 |
-
padding:
|
23 |
-
border-radius:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
font-weight: bold;
|
25 |
}
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
}
|
33 |
"""
|
34 |
|
@@ -42,7 +371,6 @@ def initialize_gpt_oss_safe():
|
|
42 |
"""Initialize GPT-OSS-20B with multiple fallback strategies"""
|
43 |
global model, tokenizer, model_status
|
44 |
|
45 |
-
# Strategy 1: Try GPT-OSS-20B with specific settings
|
46 |
strategies = [
|
47 |
{
|
48 |
"model_id": "openai/gpt-oss-20b",
|
@@ -65,16 +393,6 @@ def initialize_gpt_oss_safe():
|
|
65 |
"low_cpu_mem_usage": True
|
66 |
}
|
67 |
},
|
68 |
-
{
|
69 |
-
"model_id": "openai/gpt-oss-20b",
|
70 |
-
"name": "GPT-OSS-20B (FP16)",
|
71 |
-
"config": {
|
72 |
-
"torch_dtype": torch.float16,
|
73 |
-
"device_map": "auto",
|
74 |
-
"trust_remote_code": True,
|
75 |
-
"low_cpu_mem_usage": True
|
76 |
-
}
|
77 |
-
},
|
78 |
{
|
79 |
"model_id": "microsoft/DialoGPT-large",
|
80 |
"name": "DialoGPT-Large (Fallback)",
|
@@ -86,11 +404,6 @@ def initialize_gpt_oss_safe():
|
|
86 |
]
|
87 |
|
88 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
89 |
-
print(f"🔧 Device: {device}")
|
90 |
-
|
91 |
-
if torch.cuda.is_available():
|
92 |
-
print(f"🎮 GPU: {torch.cuda.get_device_name()}")
|
93 |
-
print(f"💾 GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
|
94 |
|
95 |
for i, strategy in enumerate(strategies):
|
96 |
try:
|
@@ -98,107 +411,54 @@ def initialize_gpt_oss_safe():
|
|
98 |
config = strategy["config"]
|
99 |
name = strategy["name"]
|
100 |
|
101 |
-
print(f"
|
102 |
-
print(f"📦 Model: {model_id}")
|
103 |
|
104 |
-
# Load tokenizer first
|
105 |
-
print("🔤 Loading tokenizer...")
|
106 |
tokenizer = AutoTokenizer.from_pretrained(
|
107 |
model_id,
|
108 |
trust_remote_code=True,
|
109 |
use_fast=True
|
110 |
)
|
111 |
|
112 |
-
# Handle pad token for generation
|
113 |
if tokenizer.pad_token is None:
|
114 |
tokenizer.pad_token = tokenizer.eos_token
|
115 |
|
116 |
-
print("✅ Tokenizer loaded successfully")
|
117 |
-
|
118 |
-
# Load model with strategy-specific config
|
119 |
-
print("🧠 Loading model...")
|
120 |
model = AutoModelForCausalLM.from_pretrained(
|
121 |
model_id,
|
122 |
**config
|
123 |
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
tokenizer=tokenizer,
|
138 |
-
torch_dtype=config.get("torch_dtype", "auto"),
|
139 |
-
device_map="auto" if torch.cuda.is_available() else None
|
140 |
-
)
|
141 |
-
|
142 |
-
test_result = test_pipe(
|
143 |
-
test_messages,
|
144 |
-
max_new_tokens=10,
|
145 |
-
do_sample=False
|
146 |
-
)
|
147 |
-
|
148 |
-
print("✅ Generation test successful")
|
149 |
-
|
150 |
-
except Exception as test_error:
|
151 |
-
print(f"⚠️ Pipeline test failed, trying direct generation: {test_error}")
|
152 |
-
|
153 |
-
# Fallback to direct generation
|
154 |
-
inputs = tokenizer.apply_chat_template(
|
155 |
-
test_messages,
|
156 |
-
add_generation_prompt=True,
|
157 |
-
return_tensors="pt",
|
158 |
-
return_dict=True,
|
159 |
-
)
|
160 |
-
|
161 |
-
if torch.cuda.is_available():
|
162 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
163 |
-
|
164 |
-
with torch.no_grad():
|
165 |
-
outputs = model.generate(
|
166 |
-
**inputs,
|
167 |
-
max_new_tokens=5,
|
168 |
-
do_sample=False,
|
169 |
-
pad_token_id=tokenizer.eos_token_id
|
170 |
-
)
|
171 |
-
|
172 |
-
print("✅ Direct generation test successful")
|
173 |
-
|
174 |
-
# If we get here, the strategy worked
|
175 |
model_status = f"✅ {name} loaded successfully on {device}"
|
176 |
-
|
177 |
-
return model_status
|
178 |
|
179 |
except Exception as e:
|
180 |
-
|
181 |
-
print(f"❌ Strategy {i+1} failed: {error_msg[:100]}...")
|
182 |
-
|
183 |
-
# Clear any partially loaded components
|
184 |
model, tokenizer = None, None
|
185 |
-
|
186 |
-
# Clear GPU memory if available
|
187 |
if torch.cuda.is_available():
|
188 |
torch.cuda.empty_cache()
|
189 |
-
|
190 |
continue
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
print(model_status)
|
195 |
-
return model_status
|
196 |
|
197 |
-
# Enhanced attack scenarios
|
198 |
ATTACK_SCENARIOS = {
|
199 |
"🔄 Lateral Movement": {
|
200 |
"description": "Advanced Persistent Threat (APT) - Attacker moving laterally through network after initial compromise",
|
201 |
"severity": "Critical",
|
|
|
|
|
202 |
"alerts": [
|
203 |
{
|
204 |
"id": "ALR-001",
|
@@ -247,6 +507,8 @@ ATTACK_SCENARIOS = {
|
|
247 |
"📧 Phishing Campaign": {
|
248 |
"description": "Email-based social engineering attack leading to credential theft and data exfiltration",
|
249 |
"severity": "High",
|
|
|
|
|
250 |
"alerts": [
|
251 |
{
|
252 |
"id": "ALR-004",
|
@@ -281,6 +543,8 @@ ATTACK_SCENARIOS = {
|
|
281 |
"🔒 Ransomware Attack": {
|
282 |
"description": "File encryption attack with ransom demand - likely REvil/Sodinokibi variant",
|
283 |
"severity": "Critical",
|
|
|
|
|
284 |
"alerts": [
|
285 |
{
|
286 |
"id": "ALR-006",
|
@@ -314,12 +578,31 @@ ATTACK_SCENARIOS = {
|
|
314 |
}
|
315 |
}
|
316 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
@spaces.GPU
|
318 |
def generate_analysis_safe(alert_data, analyst_level):
|
319 |
"""Generate analysis with safe error handling"""
|
320 |
|
321 |
if not model or not tokenizer:
|
322 |
-
return
|
323 |
|
324 |
security_prompts = {
|
325 |
"L1": f"""As a Level 1 SOC analyst, provide immediate triage for this security alert:
|
@@ -358,163 +641,180 @@ Provide: strategic assessment, attribution analysis, response plan."""
|
|
358 |
try:
|
359 |
prompt = security_prompts.get(analyst_level, security_prompts["L2"])
|
360 |
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
device_map="auto" if torch.cuda.is_available() else None
|
369 |
-
)
|
370 |
-
|
371 |
-
messages = [{"role": "user", "content": prompt}]
|
372 |
-
|
373 |
-
result = pipe(
|
374 |
-
messages,
|
375 |
-
max_new_tokens=400,
|
376 |
-
do_sample=True,
|
377 |
-
temperature=0.3,
|
378 |
-
top_p=0.9,
|
379 |
-
repetition_penalty=1.1,
|
380 |
-
pad_token_id=tokenizer.eos_token_id
|
381 |
-
)
|
382 |
-
|
383 |
-
analysis = result[0]["generated_text"][-1]["content"]
|
384 |
-
|
385 |
-
except Exception as pipe_error:
|
386 |
-
print(f"Pipeline failed, trying direct generation: {pipe_error}")
|
387 |
-
|
388 |
-
# Fallback to direct generation
|
389 |
-
messages = [{"role": "user", "content": prompt}]
|
390 |
-
|
391 |
-
inputs = tokenizer.apply_chat_template(
|
392 |
-
messages,
|
393 |
-
add_generation_prompt=True,
|
394 |
-
return_tensors="pt",
|
395 |
-
return_dict=True,
|
396 |
-
)
|
397 |
-
|
398 |
-
if torch.cuda.is_available():
|
399 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
400 |
-
|
401 |
-
with torch.no_grad():
|
402 |
-
outputs = model.generate(
|
403 |
-
**inputs,
|
404 |
-
max_new_tokens=400,
|
405 |
-
do_sample=True,
|
406 |
-
temperature=0.3,
|
407 |
-
top_p=0.9,
|
408 |
-
repetition_penalty=1.1,
|
409 |
-
pad_token_id=tokenizer.eos_token_id,
|
410 |
-
eos_token_id=tokenizer.eos_token_id
|
411 |
-
)
|
412 |
-
|
413 |
-
input_length = inputs["input_ids"].shape[-1]
|
414 |
-
generated_tokens = outputs[0][input_length:]
|
415 |
-
analysis = tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
416 |
|
417 |
-
|
418 |
-
if len(analysis.strip()) < 50:
|
419 |
-
return get_fallback_analysis(alert_data, analyst_level)
|
420 |
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
|
|
|
|
|
|
|
|
426 |
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
434 |
|
435 |
except Exception as e:
|
436 |
print(f"Generation error: {e}")
|
437 |
-
return
|
438 |
|
439 |
-
def
|
440 |
-
"""
|
|
|
|
|
|
|
441 |
|
442 |
templates = {
|
443 |
-
"L1": f"""
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
|
463 |
-
"L2": f"""
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
**📈 EXECUTIVE BRIEFING POINTS:**
|
508 |
-
• Sophisticated attack requiring coordinated incident response
|
509 |
-
• High potential for lateral movement and data exfiltration
|
510 |
-
• Recommend immediate incident response team activation
|
511 |
-
• Consider external forensics engagement for complex analysis"""
|
512 |
}
|
513 |
|
514 |
return templates.get(analyst_level, templates["L2"])
|
515 |
|
516 |
-
def
|
517 |
-
"""
|
518 |
start_time = time.time()
|
519 |
|
520 |
if scenario_name not in ATTACK_SCENARIOS:
|
@@ -531,181 +831,280 @@ def analyze_alert_with_ai(scenario_name, alert_index, analyst_level):
|
|
531 |
# Generate analysis
|
532 |
analysis = generate_analysis_safe(selected_alert, analyst_level)
|
533 |
|
534 |
-
#
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
562 |
|
563 |
processing_time = round(time.time() - start_time, 2)
|
564 |
device_info = "GPU" if torch.cuda.is_available() else "CPU"
|
565 |
-
status = f"
|
|
|
|
|
|
|
|
|
566 |
|
567 |
return alert_details, analysis, status
|
568 |
|
569 |
-
def
|
570 |
-
"""
|
571 |
if scenario_name in ATTACK_SCENARIOS:
|
572 |
scenario = ATTACK_SCENARIOS[scenario_name]
|
573 |
|
574 |
-
info = f"""
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
|
583 |
for i, alert in enumerate(scenario['alerts']):
|
584 |
-
|
585 |
-
|
586 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
587 |
|
588 |
info += """
|
589 |
-
|
590 |
-
-
|
591 |
-
|
592 |
-
-
|
593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
|
595 |
return info
|
596 |
-
return "
|
597 |
|
598 |
-
# Create Gradio interface
|
599 |
-
with gr.Blocks(title="SOC Assistant -
|
600 |
-
|
601 |
-
gr.Markdown("""
|
602 |
-
# 🛡️ SOC LLM Assistant - Fixed GPT-OSS Edition
|
603 |
-
**Multi-Strategy Model Loading with Robust Error Handling**
|
604 |
|
605 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
606 |
""")
|
607 |
|
608 |
# Model status display
|
609 |
-
status_display = gr.
|
610 |
|
611 |
with gr.Row():
|
612 |
-
# Left Panel
|
613 |
-
with gr.Column(scale=1, min_width=
|
614 |
-
gr.
|
615 |
|
616 |
scenario_dropdown = gr.Dropdown(
|
617 |
choices=list(ATTACK_SCENARIOS.keys()),
|
618 |
label="🎭 Select Attack Scenario",
|
619 |
value="🔄 Lateral Movement",
|
620 |
-
interactive=True
|
|
|
621 |
)
|
622 |
|
623 |
-
scenario_info = gr.
|
624 |
|
625 |
-
gr.
|
626 |
-
gr.
|
627 |
|
628 |
alert_slider = gr.Slider(
|
629 |
minimum=0,
|
630 |
maximum=2,
|
631 |
step=1,
|
632 |
value=0,
|
633 |
-
label="📋 Alert Selection"
|
|
|
|
|
634 |
)
|
635 |
|
636 |
analyst_level = gr.Radio(
|
637 |
choices=["L1", "L2", "L3"],
|
638 |
-
label="👤 Analyst Level",
|
639 |
value="L2",
|
640 |
-
info="L1: Triage
|
|
|
641 |
)
|
642 |
|
643 |
analyze_btn = gr.Button(
|
644 |
-
"🚀 Analyze with AI",
|
645 |
variant="primary",
|
646 |
-
size="lg"
|
|
|
647 |
)
|
648 |
|
649 |
init_btn = gr.Button(
|
650 |
-
"🔄
|
651 |
-
variant="secondary"
|
|
|
652 |
)
|
653 |
|
654 |
-
gr.
|
655 |
-
gr.
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
664 |
""")
|
665 |
|
666 |
-
# Right Panel
|
667 |
with gr.Column(scale=2):
|
668 |
-
gr.
|
669 |
-
alert_output = gr.
|
670 |
-
|
671 |
-
lines=15,
|
672 |
-
interactive=False
|
673 |
)
|
674 |
|
675 |
-
gr.
|
676 |
-
analysis_output = gr.
|
677 |
-
|
678 |
-
lines=25,
|
679 |
-
interactive=False
|
680 |
)
|
681 |
|
682 |
-
status_output = gr.
|
683 |
-
label="📊 Processing Status",
|
684 |
-
lines=1,
|
685 |
-
interactive=False
|
686 |
-
)
|
687 |
-
|
688 |
-
gr.Markdown("""
|
689 |
-
---
|
690 |
-
## 🔧 **Troubleshooting Guide**
|
691 |
-
|
692 |
-
**If you see "ModelWrapper" error:**
|
693 |
-
- ✅ **Fixed:** This version uses multiple loading strategies
|
694 |
-
- 🔄 **Automatic:** Falls back to compatible models
|
695 |
-
- 🛠️ **Manual:** Use "Retry Model Loading" button
|
696 |
-
|
697 |
-
**Loading Strategy Order:**
|
698 |
-
1. **GPT-OSS-20B** - Latest OpenAI open-weight model
|
699 |
-
2. **Fallback Models** - Tested compatible alternatives
|
700 |
-
3. **Expert Templates** - High-quality manual analysis
|
701 |
|
702 |
-
|
703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
704 |
""")
|
705 |
|
706 |
# Event handlers
|
707 |
scenario_dropdown.change(
|
708 |
-
fn=
|
709 |
inputs=[scenario_dropdown],
|
710 |
outputs=[scenario_info]
|
711 |
)
|
@@ -723,7 +1122,7 @@ with gr.Blocks(title="SOC Assistant - Fixed GPT-OSS", theme=gr.themes.Soft(), cs
|
|
723 |
)
|
724 |
|
725 |
analyze_btn.click(
|
726 |
-
fn=
|
727 |
inputs=[scenario_dropdown, alert_slider, analyst_level],
|
728 |
outputs=[alert_output, analysis_output, status_output]
|
729 |
)
|
@@ -735,7 +1134,7 @@ with gr.Blocks(title="SOC Assistant - Fixed GPT-OSS", theme=gr.themes.Soft(), cs
|
|
735 |
|
736 |
# Initialize on startup
|
737 |
demo.load(
|
738 |
-
fn=
|
739 |
inputs=[scenario_dropdown],
|
740 |
outputs=[scenario_info]
|
741 |
)
|
|
|
11 |
# Suppress warnings for cleaner output
|
12 |
warnings.filterwarnings("ignore")
|
13 |
|
14 |
+
# Enhanced CSS for beautiful design
|
15 |
+
beautiful_css = """
|
16 |
+
/* Import Google Fonts */
|
17 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
18 |
+
|
19 |
+
/* Global Styles */
|
20 |
.gradio-container {
|
21 |
+
max-width: 1400px !important;
|
22 |
+
margin: 0 auto !important;
|
23 |
+
font-family: 'Inter', sans-serif !important;
|
24 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
25 |
+
min-height: 100vh;
|
26 |
+
}
|
27 |
+
|
28 |
+
/* Header Styling */
|
29 |
+
.header-container {
|
30 |
+
background: rgba(255, 255, 255, 0.95);
|
31 |
+
backdrop-filter: blur(10px);
|
32 |
+
border-radius: 20px;
|
33 |
+
padding: 2rem;
|
34 |
+
margin: 1rem;
|
35 |
+
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.1);
|
36 |
+
border: 1px solid rgba(255, 255, 255, 0.2);
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Main Content Cards */
|
40 |
+
.content-card {
|
41 |
+
background: rgba(255, 255, 255, 0.98);
|
42 |
+
backdrop-filter: blur(15px);
|
43 |
+
border-radius: 16px;
|
44 |
+
padding: 1.5rem;
|
45 |
+
margin: 0.5rem;
|
46 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.08);
|
47 |
+
border: 1px solid rgba(255, 255, 255, 0.3);
|
48 |
+
transition: all 0.3s ease;
|
49 |
+
}
|
50 |
+
|
51 |
+
.content-card:hover {
|
52 |
+
transform: translateY(-2px);
|
53 |
+
box-shadow: 0 15px 40px rgba(0, 0, 0, 0.12);
|
54 |
+
}
|
55 |
+
|
56 |
+
/* Status Indicators */
|
57 |
+
.status-success {
|
58 |
+
background: linear-gradient(135deg, #4CAF50, #45a049);
|
59 |
+
color: white;
|
60 |
+
padding: 12px 20px;
|
61 |
+
border-radius: 12px;
|
62 |
+
font-weight: 500;
|
63 |
+
box-shadow: 0 4px 15px rgba(76, 175, 80, 0.3);
|
64 |
+
border: none;
|
65 |
}
|
66 |
+
|
67 |
+
.status-warning {
|
68 |
+
background: linear-gradient(135deg, #FF9800, #F57C00);
|
69 |
+
color: white;
|
70 |
+
padding: 12px 20px;
|
71 |
+
border-radius: 12px;
|
72 |
+
font-weight: 500;
|
73 |
+
box-shadow: 0 4px 15px rgba(255, 152, 0, 0.3);
|
74 |
+
}
|
75 |
+
|
76 |
+
.status-error {
|
77 |
+
background: linear-gradient(135deg, #f44336, #d32f2f);
|
78 |
+
color: white;
|
79 |
+
padding: 12px 20px;
|
80 |
+
border-radius: 12px;
|
81 |
+
font-weight: 500;
|
82 |
+
box-shadow: 0 4px 15px rgba(244, 67, 54, 0.3);
|
83 |
+
}
|
84 |
+
|
85 |
+
/* GPT-OSS Badge */
|
86 |
.gpt-oss-badge {
|
87 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
88 |
+
color: white;
|
89 |
+
padding: 8px 16px;
|
90 |
+
border-radius: 20px;
|
91 |
+
font-weight: 600;
|
92 |
+
font-size: 0.9rem;
|
93 |
+
display: inline-block;
|
94 |
+
box-shadow: 0 4px 15px rgba(102, 126, 234, 0.3);
|
95 |
+
margin: 0.5rem 0;
|
96 |
+
}
|
97 |
+
|
98 |
+
/* Alert Severity Badges */
|
99 |
+
.severity-critical {
|
100 |
+
background: linear-gradient(135deg, #dc3545, #c82333);
|
101 |
+
color: white;
|
102 |
+
padding: 4px 12px;
|
103 |
+
border-radius: 20px;
|
104 |
+
font-weight: 600;
|
105 |
+
font-size: 0.8rem;
|
106 |
+
display: inline-block;
|
107 |
+
box-shadow: 0 2px 8px rgba(220, 53, 69, 0.3);
|
108 |
+
}
|
109 |
+
|
110 |
+
.severity-high {
|
111 |
+
background: linear-gradient(135deg, #fd7e14, #e8680a);
|
112 |
+
color: white;
|
113 |
+
padding: 4px 12px;
|
114 |
+
border-radius: 20px;
|
115 |
+
font-weight: 600;
|
116 |
+
font-size: 0.8rem;
|
117 |
+
display: inline-block;
|
118 |
+
box-shadow: 0 2px 8px rgba(253, 126, 20, 0.3);
|
119 |
+
}
|
120 |
+
|
121 |
+
.severity-medium {
|
122 |
+
background: linear-gradient(135deg, #ffc107, #e0a800);
|
123 |
+
color: #212529;
|
124 |
+
padding: 4px 12px;
|
125 |
+
border-radius: 20px;
|
126 |
+
font-weight: 600;
|
127 |
+
font-size: 0.8rem;
|
128 |
+
display: inline-block;
|
129 |
+
box-shadow: 0 2px 8px rgba(255, 193, 7, 0.3);
|
130 |
+
}
|
131 |
+
|
132 |
+
/* Button Styling */
|
133 |
+
.primary-button {
|
134 |
+
background: linear-gradient(135deg, #667eea, #764ba2) !important;
|
135 |
+
border: none !important;
|
136 |
+
border-radius: 12px !important;
|
137 |
+
padding: 12px 24px !important;
|
138 |
+
font-weight: 600 !important;
|
139 |
+
font-size: 1rem !important;
|
140 |
+
transition: all 0.3s ease !important;
|
141 |
+
box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
|
142 |
+
}
|
143 |
+
|
144 |
+
.primary-button:hover {
|
145 |
+
transform: translateY(-2px) !important;
|
146 |
+
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.5) !important;
|
147 |
+
}
|
148 |
+
|
149 |
+
.secondary-button {
|
150 |
+
background: linear-gradient(135deg, #6c757d, #5a6268) !important;
|
151 |
+
border: none !important;
|
152 |
+
border-radius: 12px !important;
|
153 |
+
padding: 10px 20px !important;
|
154 |
+
font-weight: 500 !important;
|
155 |
+
color: white !important;
|
156 |
+
transition: all 0.3s ease !important;
|
157 |
+
}
|
158 |
+
|
159 |
+
/* Input Styling */
|
160 |
+
.custom-input {
|
161 |
+
border-radius: 12px !important;
|
162 |
+
border: 2px solid #e9ecef !important;
|
163 |
+
padding: 12px !important;
|
164 |
+
transition: all 0.3s ease !important;
|
165 |
+
background: rgba(255, 255, 255, 0.9) !important;
|
166 |
+
}
|
167 |
+
|
168 |
+
.custom-input:focus {
|
169 |
+
border-color: #667eea !important;
|
170 |
+
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
|
171 |
+
}
|
172 |
+
|
173 |
+
/* Section Headers */
|
174 |
+
.section-header {
|
175 |
+
font-size: 1.5rem;
|
176 |
+
font-weight: 700;
|
177 |
+
color: #2d3436;
|
178 |
+
margin-bottom: 1rem;
|
179 |
+
padding-bottom: 0.5rem;
|
180 |
+
border-bottom: 3px solid #667eea;
|
181 |
+
display: flex;
|
182 |
+
align-items: center;
|
183 |
+
gap: 0.5rem;
|
184 |
+
}
|
185 |
+
|
186 |
+
/* Alert Timeline */
|
187 |
+
.timeline-item {
|
188 |
+
background: rgba(102, 126, 234, 0.05);
|
189 |
+
border-left: 4px solid #667eea;
|
190 |
+
padding: 1rem;
|
191 |
+
margin: 0.5rem 0;
|
192 |
+
border-radius: 0 8px 8px 0;
|
193 |
+
transition: all 0.3s ease;
|
194 |
+
}
|
195 |
+
|
196 |
+
.timeline-item:hover {
|
197 |
+
background: rgba(102, 126, 234, 0.1);
|
198 |
+
transform: translateX(4px);
|
199 |
+
}
|
200 |
+
|
201 |
+
/* Analysis Output Styling */
|
202 |
+
.analysis-container {
|
203 |
+
background: linear-gradient(135deg, #f8f9fa, #e9ecef);
|
204 |
+
border-radius: 16px;
|
205 |
+
padding: 1.5rem;
|
206 |
+
border: 1px solid #dee2e6;
|
207 |
+
box-shadow: inset 0 2px 10px rgba(0, 0, 0, 0.05);
|
208 |
+
}
|
209 |
+
|
210 |
+
/* Confidence Meter */
|
211 |
+
.confidence-meter {
|
212 |
+
height: 8px;
|
213 |
+
background: #e9ecef;
|
214 |
+
border-radius: 10px;
|
215 |
+
overflow: hidden;
|
216 |
+
margin: 0.5rem 0;
|
217 |
+
}
|
218 |
+
|
219 |
+
.confidence-fill {
|
220 |
+
height: 100%;
|
221 |
+
background: linear-gradient(90deg, #28a745, #20c997, #17a2b8);
|
222 |
+
border-radius: 10px;
|
223 |
+
transition: width 0.5s ease;
|
224 |
+
}
|
225 |
+
|
226 |
+
/* Responsive Design */
|
227 |
+
@media (max-width: 768px) {
|
228 |
+
.gradio-container {
|
229 |
+
padding: 0.5rem;
|
230 |
+
}
|
231 |
+
|
232 |
+
.content-card {
|
233 |
+
margin: 0.25rem;
|
234 |
+
padding: 1rem;
|
235 |
+
}
|
236 |
+
|
237 |
+
.section-header {
|
238 |
+
font-size: 1.25rem;
|
239 |
+
}
|
240 |
+
}
|
241 |
+
|
242 |
+
/* Loading Animation */
|
243 |
+
.loading-spinner {
|
244 |
+
border: 3px solid #f3f3f3;
|
245 |
+
border-top: 3px solid #667eea;
|
246 |
+
border-radius: 50%;
|
247 |
+
width: 20px;
|
248 |
+
height: 20px;
|
249 |
+
animation: spin 1s linear infinite;
|
250 |
+
display: inline-block;
|
251 |
+
margin-right: 0.5rem;
|
252 |
+
}
|
253 |
+
|
254 |
+
@keyframes spin {
|
255 |
+
0% { transform: rotate(0deg); }
|
256 |
+
100% { transform: rotate(360deg); }
|
257 |
+
}
|
258 |
+
|
259 |
+
/* Alert Cards */
|
260 |
+
.alert-card {
|
261 |
+
background: white;
|
262 |
+
border-radius: 12px;
|
263 |
+
padding: 1.5rem;
|
264 |
+
margin: 0.5rem 0;
|
265 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
266 |
+
border-left: 5px solid #667eea;
|
267 |
+
transition: all 0.3s ease;
|
268 |
+
}
|
269 |
+
|
270 |
+
.alert-card:hover {
|
271 |
+
transform: translateY(-2px);
|
272 |
+
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.12);
|
273 |
+
}
|
274 |
+
|
275 |
+
/* Network Flow Visualization */
|
276 |
+
.network-flow {
|
277 |
+
display: flex;
|
278 |
+
align-items: center;
|
279 |
+
gap: 1rem;
|
280 |
+
padding: 1rem;
|
281 |
+
background: rgba(102, 126, 234, 0.05);
|
282 |
+
border-radius: 12px;
|
283 |
+
margin: 0.5rem 0;
|
284 |
+
}
|
285 |
+
|
286 |
+
.network-node {
|
287 |
+
background: #667eea;
|
288 |
color: white;
|
289 |
+
padding: 0.5rem 1rem;
|
290 |
+
border-radius: 8px;
|
291 |
+
font-weight: 500;
|
292 |
+
font-size: 0.9rem;
|
293 |
+
}
|
294 |
+
|
295 |
+
.network-arrow {
|
296 |
+
color: #667eea;
|
297 |
+
font-size: 1.5rem;
|
298 |
font-weight: bold;
|
299 |
}
|
300 |
+
|
301 |
+
/* MITRE ATT&CK Styling */
|
302 |
+
.mitre-tag {
|
303 |
+
background: linear-gradient(135deg, #e74c3c, #c0392b);
|
304 |
+
color: white;
|
305 |
+
padding: 6px 12px;
|
306 |
+
border-radius: 20px;
|
307 |
+
font-size: 0.85rem;
|
308 |
+
font-weight: 600;
|
309 |
+
display: inline-block;
|
310 |
+
box-shadow: 0 3px 10px rgba(231, 76, 60, 0.3);
|
311 |
+
}
|
312 |
+
|
313 |
+
/* Custom Scrollbar */
|
314 |
+
::-webkit-scrollbar {
|
315 |
+
width: 8px;
|
316 |
+
}
|
317 |
+
|
318 |
+
::-webkit-scrollbar-track {
|
319 |
+
background: #f1f1f1;
|
320 |
+
border-radius: 10px;
|
321 |
+
}
|
322 |
+
|
323 |
+
::-webkit-scrollbar-thumb {
|
324 |
+
background: linear-gradient(135deg, #667eea, #764ba2);
|
325 |
+
border-radius: 10px;
|
326 |
+
}
|
327 |
+
|
328 |
+
::-webkit-scrollbar-thumb:hover {
|
329 |
+
background: linear-gradient(135deg, #5a6fd8, #6a4c93);
|
330 |
+
}
|
331 |
+
|
332 |
+
/* Statistics Cards */
|
333 |
+
.stat-card {
|
334 |
+
background: white;
|
335 |
+
border-radius: 12px;
|
336 |
+
padding: 1.5rem;
|
337 |
+
text-align: center;
|
338 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
339 |
+
transition: all 0.3s ease;
|
340 |
+
border-top: 4px solid #667eea;
|
341 |
+
}
|
342 |
+
|
343 |
+
.stat-card:hover {
|
344 |
+
transform: translateY(-3px);
|
345 |
+
box-shadow: 0 8px 25px rgba(0, 0, 0, 0.12);
|
346 |
+
}
|
347 |
+
|
348 |
+
.stat-number {
|
349 |
+
font-size: 2rem;
|
350 |
+
font-weight: 700;
|
351 |
+
color: #667eea;
|
352 |
+
margin-bottom: 0.5rem;
|
353 |
+
}
|
354 |
+
|
355 |
+
.stat-label {
|
356 |
+
color: #6c757d;
|
357 |
+
font-weight: 500;
|
358 |
+
text-transform: uppercase;
|
359 |
+
font-size: 0.85rem;
|
360 |
+
letter-spacing: 0.5px;
|
361 |
}
|
362 |
"""
|
363 |
|
|
|
371 |
"""Initialize GPT-OSS-20B with multiple fallback strategies"""
|
372 |
global model, tokenizer, model_status
|
373 |
|
|
|
374 |
strategies = [
|
375 |
{
|
376 |
"model_id": "openai/gpt-oss-20b",
|
|
|
393 |
"low_cpu_mem_usage": True
|
394 |
}
|
395 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
{
|
397 |
"model_id": "microsoft/DialoGPT-large",
|
398 |
"name": "DialoGPT-Large (Fallback)",
|
|
|
404 |
]
|
405 |
|
406 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
407 |
|
408 |
for i, strategy in enumerate(strategies):
|
409 |
try:
|
|
|
411 |
config = strategy["config"]
|
412 |
name = strategy["name"]
|
413 |
|
414 |
+
print(f"🔄 Trying {name}...")
|
|
|
415 |
|
|
|
|
|
416 |
tokenizer = AutoTokenizer.from_pretrained(
|
417 |
model_id,
|
418 |
trust_remote_code=True,
|
419 |
use_fast=True
|
420 |
)
|
421 |
|
|
|
422 |
if tokenizer.pad_token is None:
|
423 |
tokenizer.pad_token = tokenizer.eos_token
|
424 |
|
|
|
|
|
|
|
|
|
425 |
model = AutoModelForCausalLM.from_pretrained(
|
426 |
model_id,
|
427 |
**config
|
428 |
)
|
429 |
|
430 |
+
# Test generation
|
431 |
+
test_messages = [{"role": "user", "content": "Test"}]
|
432 |
+
test_pipe = pipeline(
|
433 |
+
"text-generation",
|
434 |
+
model=model,
|
435 |
+
tokenizer=tokenizer,
|
436 |
+
torch_dtype=config.get("torch_dtype", "auto"),
|
437 |
+
device_map="auto" if torch.cuda.is_available() else None
|
438 |
+
)
|
439 |
+
|
440 |
+
test_pipe(test_messages, max_new_tokens=5, do_sample=False)
|
441 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
model_status = f"✅ {name} loaded successfully on {device}"
|
443 |
+
return f'<div class="status-success">🎉 {model_status}</div>'
|
|
|
444 |
|
445 |
except Exception as e:
|
446 |
+
print(f"❌ Strategy {i+1} failed: {str(e)[:100]}")
|
|
|
|
|
|
|
447 |
model, tokenizer = None, None
|
|
|
|
|
448 |
if torch.cuda.is_available():
|
449 |
torch.cuda.empty_cache()
|
|
|
450 |
continue
|
451 |
|
452 |
+
model_status = "⚠️ Using fallback analysis mode"
|
453 |
+
return f'<div class="status-warning">{model_status}</div>'
|
|
|
|
|
454 |
|
455 |
+
# Enhanced attack scenarios
|
456 |
ATTACK_SCENARIOS = {
|
457 |
"🔄 Lateral Movement": {
|
458 |
"description": "Advanced Persistent Threat (APT) - Attacker moving laterally through network after initial compromise",
|
459 |
"severity": "Critical",
|
460 |
+
"icon": "🔄",
|
461 |
+
"color": "#dc3545",
|
462 |
"alerts": [
|
463 |
{
|
464 |
"id": "ALR-001",
|
|
|
507 |
"📧 Phishing Campaign": {
|
508 |
"description": "Email-based social engineering attack leading to credential theft and data exfiltration",
|
509 |
"severity": "High",
|
510 |
+
"icon": "📧",
|
511 |
+
"color": "#fd7e14",
|
512 |
"alerts": [
|
513 |
{
|
514 |
"id": "ALR-004",
|
|
|
543 |
"🔒 Ransomware Attack": {
|
544 |
"description": "File encryption attack with ransom demand - likely REvil/Sodinokibi variant",
|
545 |
"severity": "Critical",
|
546 |
+
"icon": "🔒",
|
547 |
+
"color": "#dc3545",
|
548 |
"alerts": [
|
549 |
{
|
550 |
"id": "ALR-006",
|
|
|
578 |
}
|
579 |
}
|
580 |
|
581 |
+
def get_severity_class(severity):
|
582 |
+
"""Get CSS class for severity level"""
|
583 |
+
classes = {
|
584 |
+
"Critical": "severity-critical",
|
585 |
+
"High": "severity-high",
|
586 |
+
"Medium": "severity-medium",
|
587 |
+
"Low": "severity-low"
|
588 |
+
}
|
589 |
+
return classes.get(severity, "severity-medium")
|
590 |
+
|
591 |
+
def create_confidence_meter(confidence):
|
592 |
+
"""Create a visual confidence meter"""
|
593 |
+
return f"""
|
594 |
+
<div class="confidence-meter">
|
595 |
+
<div class="confidence-fill" style="width: {confidence}%"></div>
|
596 |
+
</div>
|
597 |
+
<small style="color: #6c757d;">{confidence}% Confidence</small>
|
598 |
+
"""
|
599 |
+
|
600 |
@spaces.GPU
|
601 |
def generate_analysis_safe(alert_data, analyst_level):
|
602 |
"""Generate analysis with safe error handling"""
|
603 |
|
604 |
if not model or not tokenizer:
|
605 |
+
return get_beautiful_fallback(alert_data, analyst_level)
|
606 |
|
607 |
security_prompts = {
|
608 |
"L1": f"""As a Level 1 SOC analyst, provide immediate triage for this security alert:
|
|
|
641 |
try:
|
642 |
prompt = security_prompts.get(analyst_level, security_prompts["L2"])
|
643 |
|
644 |
+
pipe = pipeline(
|
645 |
+
"text-generation",
|
646 |
+
model=model,
|
647 |
+
tokenizer=tokenizer,
|
648 |
+
torch_dtype="auto",
|
649 |
+
device_map="auto" if torch.cuda.is_available() else None
|
650 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
|
652 |
+
messages = [{"role": "user", "content": prompt}]
|
|
|
|
|
653 |
|
654 |
+
result = pipe(
|
655 |
+
messages,
|
656 |
+
max_new_tokens=400,
|
657 |
+
do_sample=True,
|
658 |
+
temperature=0.3,
|
659 |
+
top_p=0.9,
|
660 |
+
repetition_penalty=1.1,
|
661 |
+
pad_token_id=tokenizer.eos_token_id
|
662 |
+
)
|
663 |
|
664 |
+
analysis = result[0]["generated_text"][-1]["content"]
|
665 |
+
|
666 |
+
if len(analysis.strip()) < 50:
|
667 |
+
return get_beautiful_fallback(alert_data, analyst_level)
|
668 |
+
|
669 |
+
return f"""
|
670 |
+
<div class="analysis-container">
|
671 |
+
<div class="gpt-oss-badge">
|
672 |
+
🤖 OpenAI GPT-OSS-20B Analysis
|
673 |
+
</div>
|
674 |
+
<div style="margin-top: 1rem; line-height: 1.6;">
|
675 |
+
{analysis.strip()}
|
676 |
+
</div>
|
677 |
+
<div style="margin-top: 1rem; padding-top: 1rem; border-top: 1px solid #dee2e6; color: #6c757d; font-size: 0.9rem;">
|
678 |
+
⚡ Generated using GPT-OSS-20B • 21B parameters • 3.6B active per token
|
679 |
+
</div>
|
680 |
+
</div>
|
681 |
+
"""
|
682 |
|
683 |
except Exception as e:
|
684 |
print(f"Generation error: {e}")
|
685 |
+
return get_beautiful_fallback(alert_data, analyst_level)
|
686 |
|
687 |
+
def get_beautiful_fallback(alert_data, analyst_level):
|
688 |
+
"""Beautiful fallback analysis with enhanced styling"""
|
689 |
+
|
690 |
+
severity_class = get_severity_class(alert_data['severity'])
|
691 |
+
confidence_meter = create_confidence_meter(alert_data['confidence'])
|
692 |
|
693 |
templates = {
|
694 |
+
"L1": f"""
|
695 |
+
<div class="alert-card">
|
696 |
+
<div class="section-header">
|
697 |
+
🚨 L1 SOC Triage Analysis
|
698 |
+
</div>
|
699 |
+
|
700 |
+
<div style="margin: 1rem 0;">
|
701 |
+
<span class="{severity_class}">{alert_data['severity']} Severity</span>
|
702 |
+
<span class="mitre-tag" style="margin-left: 0.5rem;">{alert_data['mitre_tactic']}</span>
|
703 |
+
</div>
|
704 |
+
|
705 |
+
<div class="network-flow">
|
706 |
+
<div class="network-node">{alert_data['source_ip']}</div>
|
707 |
+
<div class="network-arrow">→</div>
|
708 |
+
<div class="network-node">{alert_data['destination_ip']}</div>
|
709 |
+
</div>
|
710 |
+
|
711 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">⚡ Immediate Actions Required</h4>
|
712 |
+
<div style="background: #fff3cd; padding: 1rem; border-radius: 8px; border-left: 4px solid #ffc107;">
|
713 |
+
<strong>🔒 Containment:</strong> Isolate system {alert_data['source_ip']}<br>
|
714 |
+
<strong>👤 User Action:</strong> Disable account {alert_data['user']}<br>
|
715 |
+
<strong>🌐 Network:</strong> Block connections to {alert_data['destination_ip']}<br>
|
716 |
+
<strong>📝 Documentation:</strong> Preserve logs and evidence
|
717 |
+
</div>
|
718 |
+
|
719 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📊 Threat Assessment</h4>
|
720 |
+
{confidence_meter}
|
721 |
+
|
722 |
+
<div style="background: #f8d7da; padding: 1rem; border-radius: 8px; border-left: 4px solid #dc3545; margin-top: 1rem;">
|
723 |
+
<strong>⬆️ Escalation Required:</strong> {alert_data['severity']} severity warrants L2 investigation
|
724 |
+
</div>
|
725 |
+
</div>
|
726 |
+
""",
|
727 |
|
728 |
+
"L2": f"""
|
729 |
+
<div class="alert-card">
|
730 |
+
<div class="section-header">
|
731 |
+
🔍 L2 Investigation Analysis
|
732 |
+
</div>
|
733 |
+
|
734 |
+
<div style="margin: 1rem 0;">
|
735 |
+
<span class="{severity_class}">{alert_data['severity']} Severity</span>
|
736 |
+
<span class="mitre-tag" style="margin-left: 0.5rem;">{alert_data['mitre_tactic']}</span>
|
737 |
+
</div>
|
738 |
+
|
739 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🎯 Attack Vector Analysis</h4>
|
740 |
+
<div style="background: #e2e3e5; padding: 1rem; border-radius: 8px;">
|
741 |
+
<strong>Technique:</strong> {alert_data['mitre_tactic']}<br>
|
742 |
+
<strong>Evidence:</strong> {alert_data['raw_log']}<br>
|
743 |
+
<strong>Context:</strong> {alert_data['description']}
|
744 |
+
</div>
|
745 |
+
|
746 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🔬 Investigation Roadmap</h4>
|
747 |
+
<div class="timeline-item">
|
748 |
+
<strong>1.</strong> Timeline correlation: ±30min window analysis
|
749 |
+
</div>
|
750 |
+
<div class="timeline-item">
|
751 |
+
<strong>2.</strong> User behavior baseline: {alert_data['user']} comparison
|
752 |
+
</div>
|
753 |
+
<div class="timeline-item">
|
754 |
+
<strong>3.</strong> Network flow analysis: {alert_data['source_ip']} → {alert_data['destination_ip']}
|
755 |
+
</div>
|
756 |
+
<div class="timeline-item">
|
757 |
+
<strong>4.</strong> Process tree examination and artifact collection
|
758 |
+
</div>
|
759 |
+
<div class="timeline-item">
|
760 |
+
<strong>5.</strong> Similar IOC hunting across environment
|
761 |
+
</div>
|
762 |
+
|
763 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📊 Threat Intelligence</h4>
|
764 |
+
{confidence_meter}
|
765 |
+
<div style="background: #d1ecf1; padding: 1rem; border-radius: 8px; border-left: 4px solid #17a2b8; margin-top: 1rem;">
|
766 |
+
<strong>Attribution Context:</strong> {alert_data['threat_intel']}
|
767 |
+
</div>
|
768 |
+
</div>
|
769 |
+
""",
|
770 |
|
771 |
+
"L3": f"""
|
772 |
+
<div class="alert-card">
|
773 |
+
<div class="section-header">
|
774 |
+
🎯 L3 Expert Strategic Analysis
|
775 |
+
</div>
|
776 |
+
|
777 |
+
<div style="margin: 1rem 0;">
|
778 |
+
<span class="{severity_class}">{alert_data['severity']} Severity</span>
|
779 |
+
<span class="mitre-tag" style="margin-left: 0.5rem;">{alert_data['mitre_tactic']}</span>
|
780 |
+
</div>
|
781 |
+
|
782 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🎭 Adversary Assessment</h4>
|
783 |
+
<div style="background: #f8d7da; padding: 1rem; border-radius: 8px;">
|
784 |
+
<strong>Sophistication:</strong> Advanced (based on {alert_data['mitre_tactic']})<br>
|
785 |
+
<strong>Campaign Context:</strong> {alert_data['threat_intel']}<br>
|
786 |
+
<strong>Success Probability:</strong> {alert_data['confidence']}%
|
787 |
+
</div>
|
788 |
+
|
789 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">💼 Business Impact</h4>
|
790 |
+
{confidence_meter}
|
791 |
+
<div style="background: #fff3cd; padding: 1rem; border-radius: 8px; margin-top: 1rem;">
|
792 |
+
<strong>🔴 Executive Notification:</strong> Required for {alert_data['severity']} severity<br>
|
793 |
+
<strong>📋 Regulatory Impact:</strong> Under compliance review<br>
|
794 |
+
<strong>⏰ Response Timeline:</strong> Immediate action required
|
795 |
+
</div>
|
796 |
+
|
797 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🛡️ Strategic Response Plan</h4>
|
798 |
+
<div class="timeline-item" style="background: #d4edda;">
|
799 |
+
<strong>Immediate:</strong> Threat hunting deployment across infrastructure
|
800 |
+
</div>
|
801 |
+
<div class="timeline-item" style="background: #cce5ff;">
|
802 |
+
<strong>Short-term:</strong> Enhanced monitoring and detection rules
|
803 |
+
</div>
|
804 |
+
<div class="timeline-item" style="background: #e2e3e5;">
|
805 |
+
<strong>Medium-term:</strong> Security architecture review
|
806 |
+
</div>
|
807 |
+
<div class="timeline-item" style="background: #f8d7da;">
|
808 |
+
<strong>Long-term:</strong> Threat intelligence integration
|
809 |
+
</div>
|
810 |
+
</div>
|
811 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
812 |
}
|
813 |
|
814 |
return templates.get(analyst_level, templates["L2"])
|
815 |
|
816 |
+
def analyze_alert_beautiful(scenario_name, alert_index, analyst_level):
|
817 |
+
"""Enhanced analysis function with beautiful output"""
|
818 |
start_time = time.time()
|
819 |
|
820 |
if scenario_name not in ATTACK_SCENARIOS:
|
|
|
831 |
# Generate analysis
|
832 |
analysis = generate_analysis_safe(selected_alert, analyst_level)
|
833 |
|
834 |
+
# Create beautiful alert details
|
835 |
+
severity_class = get_severity_class(selected_alert['severity'])
|
836 |
+
confidence_meter = create_confidence_meter(selected_alert['confidence'])
|
837 |
+
|
838 |
+
alert_details = f"""
|
839 |
+
<div class="alert-card">
|
840 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 1.5rem;">
|
841 |
+
<h3 style="margin: 0; color: #2d3436;">🎫 ALERT {selected_alert['id']}</h3>
|
842 |
+
<small style="color: #6c757d;">🕐 {selected_alert['timestamp']}</small>
|
843 |
+
</div>
|
844 |
+
|
845 |
+
<div class="network-flow" style="margin: 1rem 0;">
|
846 |
+
<div class="network-node">{selected_alert['source_ip']}</div>
|
847 |
+
<div class="network-arrow">→</div>
|
848 |
+
<div class="network-node">{selected_alert['destination_ip']}</div>
|
849 |
+
</div>
|
850 |
+
|
851 |
+
<div style="margin: 1rem 0;">
|
852 |
+
<strong>👤 User Account:</strong> {selected_alert['user']}<br>
|
853 |
+
<strong>🎯 Alert Type:</strong> {selected_alert['alert_type']}<br>
|
854 |
+
</div>
|
855 |
+
|
856 |
+
<div style="margin: 1.5rem 0;">
|
857 |
+
<span class="{severity_class}">{selected_alert['severity']}</span>
|
858 |
+
<span class="mitre-tag" style="margin-left: 0.5rem;">{selected_alert['mitre_tactic']}</span>
|
859 |
+
</div>
|
860 |
+
|
861 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📝 Description</h4>
|
862 |
+
<div style="background: #f8f9fa; padding: 1rem; border-radius: 8px; border-left: 4px solid #6c757d;">
|
863 |
+
{selected_alert['description']}
|
864 |
+
</div>
|
865 |
+
|
866 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🔍 Technical Evidence</h4>
|
867 |
+
<div style="background: #2d3436; color: #ffffff; padding: 1rem; border-radius: 8px; font-family: 'Courier New', monospace; font-size: 0.9rem; overflow-x: auto;">
|
868 |
+
{selected_alert['raw_log']}
|
869 |
+
</div>
|
870 |
+
|
871 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🧠 Threat Intelligence</h4>
|
872 |
+
<div style="background: #d1ecf1; padding: 1rem; border-radius: 8px; border-left: 4px solid #17a2b8;">
|
873 |
+
{selected_alert['threat_intel']}
|
874 |
+
</div>
|
875 |
+
|
876 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📊 Confidence Assessment</h4>
|
877 |
+
{confidence_meter}
|
878 |
+
</div>
|
879 |
+
"""
|
880 |
|
881 |
processing_time = round(time.time() - start_time, 2)
|
882 |
device_info = "GPU" if torch.cuda.is_available() else "CPU"
|
883 |
+
status = f"""
|
884 |
+
<div class="status-success">
|
885 |
+
✅ {analyst_level} analysis completed in {processing_time}s | Device: {device_info} | {model_status}
|
886 |
+
</div>
|
887 |
+
"""
|
888 |
|
889 |
return alert_details, analysis, status
|
890 |
|
891 |
+
def get_beautiful_scenario_info(scenario_name):
|
892 |
+
"""Create beautiful scenario information display"""
|
893 |
if scenario_name in ATTACK_SCENARIOS:
|
894 |
scenario = ATTACK_SCENARIOS[scenario_name]
|
895 |
|
896 |
+
info = f"""
|
897 |
+
<div class="content-card">
|
898 |
+
<div class="section-header">
|
899 |
+
{scenario['icon']} Attack Scenario: {scenario_name}
|
900 |
+
</div>
|
901 |
+
|
902 |
+
<div style="margin: 1.5rem 0;">
|
903 |
+
<div class="stat-card" style="display: inline-block; margin-right: 1rem; min-width: 150px;">
|
904 |
+
<div class="stat-number">{len(scenario['alerts'])}</div>
|
905 |
+
<div class="stat-label">Security Events</div>
|
906 |
+
</div>
|
907 |
+
<span class="{get_severity_class(scenario['severity'])}" style="vertical-align: top;">
|
908 |
+
{scenario['severity']} Severity
|
909 |
+
</span>
|
910 |
+
</div>
|
911 |
+
|
912 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">📋 Scenario Description</h4>
|
913 |
+
<div style="background: #f8f9fa; padding: 1.5rem; border-radius: 12px; border-left: 5px solid {scenario.get('color', '#667eea')};">
|
914 |
+
{scenario['description']}
|
915 |
+
</div>
|
916 |
+
|
917 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🔍 Alert Timeline</h4>
|
918 |
+
"""
|
919 |
|
920 |
for i, alert in enumerate(scenario['alerts']):
|
921 |
+
severity_class = get_severity_class(alert['severity'])
|
922 |
+
info += f"""
|
923 |
+
<div class="timeline-item" style="margin: 0.5rem 0;">
|
924 |
+
<div style="display: flex; justify-content: space-between; align-items: center;">
|
925 |
+
<div>
|
926 |
+
<strong>[{i+1}] {alert['timestamp']}</strong> - {alert['alert_type']}
|
927 |
+
</div>
|
928 |
+
<div>
|
929 |
+
<span class="{severity_class}" style="font-size: 0.7rem; padding: 2px 8px;">
|
930 |
+
{alert['severity']}
|
931 |
+
</span>
|
932 |
+
<span style="margin-left: 0.5rem; color: #6c757d; font-size: 0.8rem;">
|
933 |
+
{alert['confidence']}% confidence
|
934 |
+
</span>
|
935 |
+
</div>
|
936 |
+
</div>
|
937 |
+
</div>
|
938 |
+
"""
|
939 |
|
940 |
info += """
|
941 |
+
<h4 style="color: #2d3436; margin: 1.5rem 0 1rem 0;">🤖 AI Analysis Capabilities</h4>
|
942 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 1rem; margin-top: 1rem;">
|
943 |
+
<div class="stat-card">
|
944 |
+
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">🧠</div>
|
945 |
+
<div class="stat-label">GPT-OSS-20B Reasoning</div>
|
946 |
+
</div>
|
947 |
+
<div class="stat-card">
|
948 |
+
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">⚡</div>
|
949 |
+
<div class="stat-label">Multi-Strategy Loading</div>
|
950 |
+
</div>
|
951 |
+
<div class="stat-card">
|
952 |
+
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">🛡️</div>
|
953 |
+
<div class="stat-label">Robust Error Handling</div>
|
954 |
+
</div>
|
955 |
+
<div class="stat-card">
|
956 |
+
<div style="font-size: 1.5rem; margin-bottom: 0.5rem;">🎯</div>
|
957 |
+
<div class="stat-label">Expert Templates</div>
|
958 |
+
</div>
|
959 |
+
</div>
|
960 |
+
</div>
|
961 |
+
"""
|
962 |
|
963 |
return info
|
964 |
+
return '<div class="status-warning">⚠️ No scenario selected. Please choose an attack scenario to begin analysis.</div>'
|
965 |
|
966 |
+
# Create beautiful Gradio interface
|
967 |
+
with gr.Blocks(title="SOC Assistant - Beautiful Edition", theme=gr.themes.Soft(), css=beautiful_css) as demo:
|
|
|
|
|
|
|
|
|
968 |
|
969 |
+
# Header
|
970 |
+
gr.HTML("""
|
971 |
+
<div class="header-container">
|
972 |
+
<div style="text-align: center;">
|
973 |
+
<h1 style="margin: 0; font-size: 2.5rem; background: linear-gradient(135deg, #667eea, #764ba2); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-weight: 700;">
|
974 |
+
🛡️ SOC LLM Assistant
|
975 |
+
</h1>
|
976 |
+
<p style="margin: 0.5rem 0 0 0; font-size: 1.2rem; color: #6c757d; font-weight: 400;">
|
977 |
+
Beautiful Edition • Powered by GPT-OSS-20B
|
978 |
+
</p>
|
979 |
+
<div class="gpt-oss-badge" style="margin-top: 1rem;">
|
980 |
+
🚀 Multi-Strategy AI Model Loading • Enhanced UI/UX
|
981 |
+
</div>
|
982 |
+
</div>
|
983 |
+
</div>
|
984 |
""")
|
985 |
|
986 |
# Model status display
|
987 |
+
status_display = gr.HTML('<div class="status-warning">🔄 Initializing AI models...</div>')
|
988 |
|
989 |
with gr.Row():
|
990 |
+
# Left Panel - Controls
|
991 |
+
with gr.Column(scale=1, min_width=350):
|
992 |
+
gr.HTML('<div class="section-header">🎮 Attack Simulation Control</div>')
|
993 |
|
994 |
scenario_dropdown = gr.Dropdown(
|
995 |
choices=list(ATTACK_SCENARIOS.keys()),
|
996 |
label="🎭 Select Attack Scenario",
|
997 |
value="🔄 Lateral Movement",
|
998 |
+
interactive=True,
|
999 |
+
elem_classes=["custom-input"]
|
1000 |
)
|
1001 |
|
1002 |
+
scenario_info = gr.HTML()
|
1003 |
|
1004 |
+
gr.HTML('<div style="margin: 2rem 0 1rem 0; height: 2px; background: linear-gradient(90deg, #667eea, #764ba2); border-radius: 2px;"></div>')
|
1005 |
+
gr.HTML('<div class="section-header">⚙️ Analysis Configuration</div>')
|
1006 |
|
1007 |
alert_slider = gr.Slider(
|
1008 |
minimum=0,
|
1009 |
maximum=2,
|
1010 |
step=1,
|
1011 |
value=0,
|
1012 |
+
label="📋 Alert Selection",
|
1013 |
+
info="Choose which alert from the scenario to analyze",
|
1014 |
+
elem_classes=["custom-input"]
|
1015 |
)
|
1016 |
|
1017 |
analyst_level = gr.Radio(
|
1018 |
choices=["L1", "L2", "L3"],
|
1019 |
+
label="👤 Analyst Experience Level",
|
1020 |
value="L2",
|
1021 |
+
info="🔹 L1: Triage • 🔹 L2: Investigation • 🔹 L3: Expert Analysis",
|
1022 |
+
elem_classes=["custom-input"]
|
1023 |
)
|
1024 |
|
1025 |
analyze_btn = gr.Button(
|
1026 |
+
"🚀 Analyze Alert with AI",
|
1027 |
variant="primary",
|
1028 |
+
size="lg",
|
1029 |
+
elem_classes=["primary-button"]
|
1030 |
)
|
1031 |
|
1032 |
init_btn = gr.Button(
|
1033 |
+
"🔄 Reinitialize Models",
|
1034 |
+
variant="secondary",
|
1035 |
+
elem_classes=["secondary-button"]
|
1036 |
)
|
1037 |
|
1038 |
+
gr.HTML('<div style="margin: 2rem 0 1rem 0; height: 2px; background: linear-gradient(90deg, #667eea, #764ba2); border-radius: 2px;"></div>')
|
1039 |
+
gr.HTML("""
|
1040 |
+
<div class="content-card">
|
1041 |
+
<div class="section-header">🔧 System Features</div>
|
1042 |
+
<div style="margin-top: 1rem;">
|
1043 |
+
<div class="timeline-item" style="background: rgba(102, 126, 234, 0.1);">
|
1044 |
+
<strong>🧠 GPT-OSS-20B:</strong> OpenAI's latest reasoning model
|
1045 |
+
</div>
|
1046 |
+
<div class="timeline-item" style="background: rgba(40, 167, 69, 0.1);">
|
1047 |
+
<strong>⚡ Multi-Strategy:</strong> Automatic model fallback
|
1048 |
+
</div>
|
1049 |
+
<div class="timeline-item" style="background: rgba(253, 126, 20, 0.1);">
|
1050 |
+
<strong>🛡️ Error Recovery:</strong> Robust failure handling
|
1051 |
+
</div>
|
1052 |
+
<div class="timeline-item" style="background: rgba(220, 53, 69, 0.1);">
|
1053 |
+
<strong>🎯 Expert Analysis:</strong> High-quality templates
|
1054 |
+
</div>
|
1055 |
+
</div>
|
1056 |
+
</div>
|
1057 |
""")
|
1058 |
|
1059 |
+
# Right Panel - Results
|
1060 |
with gr.Column(scale=2):
|
1061 |
+
gr.HTML('<div class="section-header">📋 Security Alert Details</div>')
|
1062 |
+
alert_output = gr.HTML(
|
1063 |
+
'<div class="content-card"><p style="text-align: center; color: #6c757d; padding: 2rem;">Alert details will appear here after analysis...</p></div>'
|
|
|
|
|
1064 |
)
|
1065 |
|
1066 |
+
gr.HTML('<div class="section-header">🤖 AI-Powered Security Analysis</div>')
|
1067 |
+
analysis_output = gr.HTML(
|
1068 |
+
'<div class="content-card"><p style="text-align: center; color: #6c757d; padding: 2rem;">AI analysis will appear here after processing...</p></div>'
|
|
|
|
|
1069 |
)
|
1070 |
|
1071 |
+
status_output = gr.HTML()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1072 |
|
1073 |
+
# Footer
|
1074 |
+
gr.HTML("""
|
1075 |
+
<div class="content-card" style="margin-top: 2rem; text-align: center;">
|
1076 |
+
<h3 style="color: #2d3436; margin-bottom: 1rem;">🎯 Enhanced Features</h3>
|
1077 |
+
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 1rem;">
|
1078 |
+
<div class="stat-card">
|
1079 |
+
<div style="font-size: 2rem; margin-bottom: 0.5rem;">🎨</div>
|
1080 |
+
<div class="stat-label">Beautiful Design</div>
|
1081 |
+
<p style="margin-top: 0.5rem; font-size: 0.8rem; color: #6c757d;">Modern, responsive UI with glassmorphism effects</p>
|
1082 |
+
</div>
|
1083 |
+
<div class="stat-card">
|
1084 |
+
<div style="font-size: 2rem; margin-bottom: 0.5rem;">🚀</div>
|
1085 |
+
<div class="stat-label">GPT-OSS Integration</div>
|
1086 |
+
<p style="margin-top: 0.5rem; font-size: 0.8rem; color: #6c757d;">Latest OpenAI open-weight reasoning model</p>
|
1087 |
+
</div>
|
1088 |
+
<div class="stat-card">
|
1089 |
+
<div style="font-size: 2rem; margin-bottom: 0.5rem;">🔧</div>
|
1090 |
+
<div class="stat-label">Smart Fallbacks</div>
|
1091 |
+
<p style="margin-top: 0.5rem; font-size: 0.8rem; color: #6c757d;">Automatic error recovery and model switching</p>
|
1092 |
+
</div>
|
1093 |
+
<div class="stat-card">
|
1094 |
+
<div style="font-size: 2rem; margin-bottom: 0.5rem;">📊</div>
|
1095 |
+
<div class="stat-label">Rich Analytics</div>
|
1096 |
+
<p style="margin-top: 0.5rem; font-size: 0.8rem; color: #6c757d;">Visual confidence meters and threat timelines</p>
|
1097 |
+
</div>
|
1098 |
+
</div>
|
1099 |
+
<div style="margin-top: 2rem; padding-top: 1.5rem; border-top: 1px solid #dee2e6; color: #6c757d;">
|
1100 |
+
<strong>👨🎓 Research:</strong> Abdullah Alanazi | <strong>🏛️ Institution:</strong> KAUST | <strong>👨🏫 Supervisor:</strong> Prof. Ali Shoker
|
1101 |
+
</div>
|
1102 |
+
</div>
|
1103 |
""")
|
1104 |
|
1105 |
# Event handlers
|
1106 |
scenario_dropdown.change(
|
1107 |
+
fn=get_beautiful_scenario_info,
|
1108 |
inputs=[scenario_dropdown],
|
1109 |
outputs=[scenario_info]
|
1110 |
)
|
|
|
1122 |
)
|
1123 |
|
1124 |
analyze_btn.click(
|
1125 |
+
fn=analyze_alert_beautiful,
|
1126 |
inputs=[scenario_dropdown, alert_slider, analyst_level],
|
1127 |
outputs=[alert_output, analysis_output, status_output]
|
1128 |
)
|
|
|
1134 |
|
1135 |
# Initialize on startup
|
1136 |
demo.load(
|
1137 |
+
fn=get_beautiful_scenario_info,
|
1138 |
inputs=[scenario_dropdown],
|
1139 |
outputs=[scenario_info]
|
1140 |
)
|